10 KiB
Scheduler Architecture for Horizontal Scaling
This document describes the extracted scheduler architecture that enables horizontal scaling of background processing tasks.
Architecture Overview
The scheduler system has been refactored from a monolithic approach to a service-oriented architecture that supports:
- Individual Scheduler Services - Each scheduler runs as a separate service
- Horizontal Scaling - Multiple instances of the same scheduler can run across different machines
- Health Monitoring - Built-in health checks for load balancers and orchestrators
- Graceful Shutdown - Proper handling of shutdown signals for zero-downtime deployments
- Centralized Management - Optional scheduler manager for coordinated operations
Components
1. BaseSchedulerService
Abstract base class providing common functionality:
export abstract class BaseSchedulerService extends EventEmitter {
// Common scheduler functionality
protected abstract executeTask(): Promise<void>;
async start(): Promise<void>;
async stop(): Promise<void>;
pause(): void;
resume(): void;
getHealthStatus(): HealthStatus;
getMetrics(): SchedulerMetrics;
}
Features:
- Status management (STOPPED, STARTING, RUNNING, PAUSED, ERROR)
- Metrics collection (run counts, timing, success/failure rates)
- Event emission for monitoring
- Configurable intervals and timeouts
- Automatic retry handling
2. Individual Scheduler Services
CsvImportSchedulerService
Handles periodic CSV data import from companies:
const csvScheduler = new CsvImportSchedulerService({
interval: "*/10 * * * *", // Every 10 minutes
batchSize: 10,
maxConcurrentImports: 5,
timeout: 300000, // 5 minutes
});
Features:
- Batch processing with configurable concurrency
- Duplicate detection
- Company-specific error handling
- Progress monitoring
Additional Schedulers (To Be Implemented)
ImportProcessingSchedulerService- Process imported CSV data into sessionsSessionProcessingSchedulerService- AI analysis and categorizationBatchProcessingSchedulerService- OpenAI Batch API integration
3. SchedulerManager
Orchestrates multiple schedulers in a single process:
const manager = new SchedulerManager();
manager.registerScheduler({
id: "csv-import",
name: "CSV Import Scheduler",
service: new CsvImportSchedulerService(),
autoStart: true,
critical: true, // Auto-restart on failure
});
await manager.startAll();
Features:
- Automatic restart of failed critical schedulers
- Health monitoring across all schedulers
- Coordinated start/stop operations
- Event aggregation and logging
4. Standalone Scheduler Runner
Runs individual schedulers as separate processes:
# Run CSV import scheduler as standalone process
npx tsx lib/services/schedulers/StandaloneSchedulerRunner.ts --scheduler=csv-import
# List available schedulers
npx tsx lib/services/schedulers/StandaloneSchedulerRunner.ts --list
Features:
- Independent process execution
- Environment variable configuration
- Graceful shutdown handling
- Health reporting for monitoring
Deployment Patterns
1. Single Process (Current Default)
All schedulers run within the main Next.js server process:
// server.ts
import { initializeSchedulers } from "./lib/services/schedulers/ServerSchedulerIntegration";
await initializeSchedulers();
Pros:
- Simple deployment
- Lower resource usage
- Easy local development
Cons:
- Limited scalability
- Single point of failure
- Resource contention
2. Separate Processes
Each scheduler runs as an independent process:
# Terminal 1: Main application
npm run dev
# Terminal 2: CSV Import Scheduler
npm run scheduler:csv-import
# Terminal 3: Session Processing Scheduler
npm run scheduler:session-processing
Pros:
- Independent scaling
- Fault isolation
- Resource optimization per scheduler
Cons:
- More complex deployment
- Higher resource overhead
- Inter-process coordination needed
3. Container Orchestration (Recommended for Production)
Each scheduler runs in separate containers managed by Kubernetes/Docker Swarm:
# docker-compose.yml
version: "3.8"
services:
app:
build: .
environment:
- SCHEDULER_ENABLED=false # Disable in-process schedulers
csv-import-scheduler:
build: .
command: npx tsx lib/services/schedulers/StandaloneSchedulerRunner.ts --scheduler=csv-import
environment:
- CSV_IMPORT_INTERVAL=*/10 * * * *
- CSV_IMPORT_BATCH_SIZE=10
session-processing-scheduler:
build: .
command: npx tsx lib/services/schedulers/StandaloneSchedulerRunner.ts --scheduler=session-processing
environment:
- SESSION_PROCESSING_INTERVAL=*/5 * * * *
Pros:
- Full horizontal scaling
- Independent resource allocation
- Health monitoring integration
- Zero-downtime deployments
Cons:
- Complex orchestration setup
- Network latency considerations
- Distributed system challenges
Configuration
Environment Variables
# Global Scheduler Settings
SCHEDULER_ENABLED=true
SCHEDULER_AUTO_RESTART=true
# CSV Import Scheduler
CSV_IMPORT_INTERVAL="*/10 * * * *"
CSV_IMPORT_BATCH_SIZE=10
CSV_IMPORT_MAX_CONCURRENT=5
CSV_IMPORT_TIMEOUT=300000
# Import Processing Scheduler
IMPORT_PROCESSING_INTERVAL="*/2 * * * *"
IMPORT_PROCESSING_TIMEOUT=120000
# Session Processing Scheduler
SESSION_PROCESSING_INTERVAL="*/5 * * * *"
SESSION_PROCESSING_BATCH_SIZE=50
# Batch Processing Scheduler
BATCH_PROCESSING_INTERVAL="*/5 * * * *"
BATCH_PROCESSING_CHECK_INTERVAL="*/2 * * * *"
Package.json Scripts
{
"scripts": {
"scheduler:csv-import": "tsx lib/services/schedulers/StandaloneSchedulerRunner.ts --scheduler=csv-import",
"scheduler:import-processing": "tsx lib/services/schedulers/StandaloneSchedulerRunner.ts --scheduler=import-processing",
"scheduler:session-processing": "tsx lib/services/schedulers/StandaloneSchedulerRunner.ts --scheduler=session-processing",
"scheduler:batch-processing": "tsx lib/services/schedulers/StandaloneSchedulerRunner.ts --scheduler=batch-processing"
}
}
Health Monitoring
Health Check Endpoints
# Overall scheduler health
GET /api/admin/schedulers/health
# Scheduler management
GET /api/admin/schedulers
POST /api/admin/schedulers
Response Format
{
"healthy": true,
"status": "healthy",
"timestamp": "2024-01-15T10:30:00.000Z",
"schedulers": {
"total": 4,
"running": 4,
"errors": 0
},
"details": {
"csv-import": {
"status": "RUNNING",
"healthy": true,
"lastSuccess": "2024-01-15T10:25:00.000Z"
}
}
}
Kubernetes Integration
apiVersion: apps/v1
kind: Deployment
metadata:
name: csv-import-scheduler
spec:
template:
spec:
containers:
- name: scheduler
image: livedash:latest
command:
[
"npx",
"tsx",
"lib/services/schedulers/StandaloneSchedulerRunner.ts",
"--scheduler=csv-import",
]
livenessProbe:
httpGet:
path: /api/admin/schedulers/health
port: 3000
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /api/admin/schedulers/health
port: 3000
initialDelaySeconds: 5
periodSeconds: 5
Scaling Strategies
1. Vertical Scaling
Increase resources for scheduler processes:
# docker-compose.yml
csv-import-scheduler:
deploy:
resources:
limits:
cpus: "2.0"
memory: 2G
reservations:
cpus: "1.0"
memory: 1G
2. Horizontal Scaling
Run multiple instances of the same scheduler:
# Kubernetes
apiVersion: apps/v1
kind: Deployment
metadata:
name: csv-import-scheduler
spec:
replicas: 3 # Multiple instances
template:
spec:
containers:
- name: scheduler
env:
- name: SCHEDULER_INSTANCE_ID
valueFrom:
fieldRef:
fieldPath: metadata.name
Note: Ensure scheduler logic handles multiple instances correctly (e.g., using database locks or partitioning).
3. Geographic Distribution
Deploy schedulers across different regions:
# Region-specific scheduling
csv-import-scheduler-us:
environment:
- REGION=us
- CSV_COMPANIES_FILTER=region:us
csv-import-scheduler-eu:
environment:
- REGION=eu
- CSV_COMPANIES_FILTER=region:eu
Migration Guide
From Current Architecture
- Phase 1: Extract Schedulers
- ✅ Create BaseSchedulerService
- ✅ Implement CsvImportSchedulerService
- ✅ Create SchedulerManager
- ⏳ Implement remaining scheduler services
- Phase 2: Deployment Options
- ✅ Add ServerSchedulerIntegration for backwards compatibility
- ✅ Create StandaloneSchedulerRunner
- ✅ Add health check endpoints
- Phase 3: Container Support
- ⏳ Create Dockerfile for scheduler containers
- ⏳ Add Kubernetes manifests
- ⏳ Implement distributed coordination
- Phase 4: Production Migration
- ⏳ Deploy separate scheduler containers
- ⏳ Monitor performance and stability
- ⏳ Gradually increase horizontal scaling
Breaking Changes
- Scheduler initialization moved from
server.tstoServerSchedulerIntegration - Individual scheduler functions replaced with service classes
- Configuration moved to environment variables
Benefits
- Scalability: Independent scaling of different scheduler types
- Reliability: Fault isolation prevents cascading failures
- Performance: Optimized resource allocation per scheduler
- Monitoring: Granular health checks and metrics
- Deployment: Zero-downtime updates and rollbacks
- Development: Easier testing and debugging of individual schedulers
Next Steps
- Implement remaining scheduler services (ImportProcessing, SessionProcessing, BatchProcessing)
- Add distributed coordination for multi-instance schedulers
- Create Kubernetes operators for automatic scaling
- Implement scheduler-specific metrics and dashboards
- Add scheduler performance optimization tools