mirror of
https://github.com/kjanat/livedash-node.git
synced 2026-01-16 06:32:10 +01:00
405 lines
12 KiB
TypeScript
405 lines
12 KiB
TypeScript
// Session processing scheduler with configurable intervals and batch sizes
|
|
import cron from "node-cron";
|
|
import { PrismaClient } from "@prisma/client";
|
|
import fetch from "node-fetch";
|
|
import { getSchedulerConfig } from "./schedulerConfig";
|
|
|
|
const prisma = new PrismaClient();
|
|
const OPENAI_API_KEY = process.env.OPENAI_API_KEY;
|
|
const OPENAI_API_URL = "https://api.openai.com/v1/chat/completions";
|
|
|
|
interface ProcessedData {
|
|
language: string;
|
|
messages_sent: number;
|
|
sentiment: "positive" | "neutral" | "negative";
|
|
escalated: boolean;
|
|
forwarded_hr: boolean;
|
|
category: string;
|
|
questions: string[];
|
|
summary: string;
|
|
session_id: string;
|
|
}
|
|
|
|
interface ProcessingResult {
|
|
sessionId: string;
|
|
success: boolean;
|
|
error?: string;
|
|
}
|
|
|
|
/**
|
|
* Processes a session transcript using OpenAI API
|
|
*/
|
|
async function processTranscriptWithOpenAI(sessionId: string, transcript: string): Promise<ProcessedData> {
|
|
if (!OPENAI_API_KEY) {
|
|
throw new Error("OPENAI_API_KEY environment variable is not set");
|
|
}
|
|
|
|
// Create a system message with instructions
|
|
const systemMessage = `
|
|
You are an AI assistant tasked with analyzing chat transcripts.
|
|
Extract the following information from the transcript:
|
|
1. The primary language used by the user (ISO 639-1 code)
|
|
2. Number of messages sent by the user
|
|
3. Overall sentiment (positive, neutral, or negative)
|
|
4. Whether the conversation was escalated
|
|
5. Whether HR contact was mentioned or provided
|
|
6. The best-fitting category for the conversation from this list:
|
|
- Schedule & Hours
|
|
- Leave & Vacation
|
|
- Sick Leave & Recovery
|
|
- Salary & Compensation
|
|
- Contract & Hours
|
|
- Onboarding
|
|
- Offboarding
|
|
- Workwear & Staff Pass
|
|
- Team & Contacts
|
|
- Personal Questions
|
|
- Access & Login
|
|
- Social questions
|
|
- Unrecognized / Other
|
|
7. Up to 5 paraphrased questions asked by the user (in English)
|
|
8. A brief summary of the conversation (10-300 characters)
|
|
|
|
Return the data in JSON format matching this schema:
|
|
{
|
|
"language": "ISO 639-1 code",
|
|
"messages_sent": number,
|
|
"sentiment": "positive|neutral|negative",
|
|
"escalated": boolean,
|
|
"forwarded_hr": boolean,
|
|
"category": "one of the categories listed above",
|
|
"questions": ["question 1", "question 2", ...],
|
|
"summary": "brief summary",
|
|
"session_id": "${sessionId}"
|
|
}
|
|
`;
|
|
|
|
try {
|
|
const response = await fetch(OPENAI_API_URL, {
|
|
method: "POST",
|
|
headers: {
|
|
"Content-Type": "application/json",
|
|
Authorization: `Bearer ${OPENAI_API_KEY}`,
|
|
},
|
|
body: JSON.stringify({
|
|
model: "gpt-4-turbo",
|
|
messages: [
|
|
{
|
|
role: "system",
|
|
content: systemMessage,
|
|
},
|
|
{
|
|
role: "user",
|
|
content: transcript,
|
|
},
|
|
],
|
|
temperature: 0.3, // Lower temperature for more consistent results
|
|
response_format: { type: "json_object" },
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
const errorText = await response.text();
|
|
throw new Error(`OpenAI API error: ${response.status} - ${errorText}`);
|
|
}
|
|
|
|
const data: any = await response.json();
|
|
const processedData = JSON.parse(data.choices[0].message.content);
|
|
|
|
// Validate the response against our expected schema
|
|
validateOpenAIResponse(processedData);
|
|
|
|
return processedData;
|
|
} catch (error) {
|
|
process.stderr.write(`Error processing transcript with OpenAI: ${error}\n`);
|
|
throw error;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Validates the OpenAI response against our expected schema
|
|
*/
|
|
function validateOpenAIResponse(data: any): void {
|
|
// Check required fields
|
|
const requiredFields = [
|
|
"language",
|
|
"messages_sent",
|
|
"sentiment",
|
|
"escalated",
|
|
"forwarded_hr",
|
|
"category",
|
|
"questions",
|
|
"summary",
|
|
"session_id",
|
|
];
|
|
|
|
for (const field of requiredFields) {
|
|
if (!(field in data)) {
|
|
throw new Error(`Missing required field: ${field}`);
|
|
}
|
|
}
|
|
|
|
// Validate field types
|
|
if (typeof data.language !== "string" || !/^[a-z]{2}$/.test(data.language)) {
|
|
throw new Error(
|
|
"Invalid language format. Expected ISO 639-1 code (e.g., 'en')"
|
|
);
|
|
}
|
|
|
|
if (typeof data.messages_sent !== "number" || data.messages_sent < 0) {
|
|
throw new Error("Invalid messages_sent. Expected non-negative number");
|
|
}
|
|
|
|
if (!["positive", "neutral", "negative"].includes(data.sentiment)) {
|
|
throw new Error(
|
|
"Invalid sentiment. Expected 'positive', 'neutral', or 'negative'"
|
|
);
|
|
}
|
|
|
|
if (typeof data.escalated !== "boolean") {
|
|
throw new Error("Invalid escalated. Expected boolean");
|
|
}
|
|
|
|
if (typeof data.forwarded_hr !== "boolean") {
|
|
throw new Error("Invalid forwarded_hr. Expected boolean");
|
|
}
|
|
|
|
const validCategories = [
|
|
"Schedule & Hours",
|
|
"Leave & Vacation",
|
|
"Sick Leave & Recovery",
|
|
"Salary & Compensation",
|
|
"Contract & Hours",
|
|
"Onboarding",
|
|
"Offboarding",
|
|
"Workwear & Staff Pass",
|
|
"Team & Contacts",
|
|
"Personal Questions",
|
|
"Access & Login",
|
|
"Social questions",
|
|
"Unrecognized / Other",
|
|
];
|
|
|
|
if (!validCategories.includes(data.category)) {
|
|
throw new Error(
|
|
`Invalid category. Expected one of: ${validCategories.join(", ")}`
|
|
);
|
|
}
|
|
|
|
if (!Array.isArray(data.questions)) {
|
|
throw new Error("Invalid questions. Expected array of strings");
|
|
}
|
|
|
|
if (
|
|
typeof data.summary !== "string" ||
|
|
data.summary.length < 10 ||
|
|
data.summary.length > 300
|
|
) {
|
|
throw new Error(
|
|
"Invalid summary. Expected string between 10-300 characters"
|
|
);
|
|
}
|
|
|
|
if (typeof data.session_id !== "string") {
|
|
throw new Error("Invalid session_id. Expected string");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Process a single session
|
|
*/
|
|
async function processSingleSession(session: any): Promise<ProcessingResult> {
|
|
if (session.messages.length === 0) {
|
|
return {
|
|
sessionId: session.id,
|
|
success: false,
|
|
error: "Session has no messages",
|
|
};
|
|
}
|
|
|
|
try {
|
|
// Convert messages back to transcript format for OpenAI processing
|
|
const transcript = session.messages
|
|
.map(
|
|
(msg: any) =>
|
|
`[${new Date(msg.timestamp)
|
|
.toLocaleString("en-GB", {
|
|
day: "2-digit",
|
|
month: "2-digit",
|
|
year: "numeric",
|
|
hour: "2-digit",
|
|
minute: "2-digit",
|
|
second: "2-digit",
|
|
})
|
|
.replace(",", "")}] ${msg.role}: ${msg.content}`
|
|
)
|
|
.join("\n");
|
|
|
|
const processedData = await processTranscriptWithOpenAI(
|
|
session.id,
|
|
transcript
|
|
);
|
|
|
|
// Map sentiment string to float value for compatibility with existing data
|
|
const sentimentMap = {
|
|
positive: 0.8,
|
|
neutral: 0.0,
|
|
negative: -0.8,
|
|
};
|
|
|
|
// Update the session with processed data
|
|
await prisma.session.update({
|
|
where: { id: session.id },
|
|
data: {
|
|
language: processedData.language,
|
|
messagesSent: processedData.messages_sent,
|
|
sentiment: sentimentMap[processedData.sentiment] || 0,
|
|
sentimentCategory: processedData.sentiment.toUpperCase() as "POSITIVE" | "NEUTRAL" | "NEGATIVE",
|
|
escalated: processedData.escalated,
|
|
forwardedHr: processedData.forwarded_hr,
|
|
category: processedData.category,
|
|
questions: JSON.stringify(processedData.questions),
|
|
summary: processedData.summary,
|
|
processed: true,
|
|
},
|
|
});
|
|
|
|
return {
|
|
sessionId: session.id,
|
|
success: true,
|
|
};
|
|
} catch (error) {
|
|
return {
|
|
sessionId: session.id,
|
|
success: false,
|
|
error: error instanceof Error ? error.message : String(error),
|
|
};
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Process sessions in parallel with concurrency limit
|
|
*/
|
|
async function processSessionsInParallel(sessions: any[], maxConcurrency: number = 5): Promise<ProcessingResult[]> {
|
|
const results: Promise<ProcessingResult>[] = [];
|
|
const executing: Promise<ProcessingResult>[] = [];
|
|
|
|
for (const session of sessions) {
|
|
const promise = processSingleSession(session).then((result) => {
|
|
process.stdout.write(
|
|
result.success
|
|
? `[ProcessingScheduler] ✓ Successfully processed session ${result.sessionId}\n`
|
|
: `[ProcessingScheduler] ✗ Failed to process session ${result.sessionId}: ${result.error}\n`
|
|
);
|
|
return result;
|
|
});
|
|
|
|
results.push(promise);
|
|
executing.push(promise);
|
|
|
|
if (executing.length >= maxConcurrency) {
|
|
await Promise.race(executing);
|
|
const completedIndex = executing.findIndex(p => p === promise);
|
|
if (completedIndex !== -1) {
|
|
executing.splice(completedIndex, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
return Promise.all(results);
|
|
}
|
|
|
|
/**
|
|
* Process unprocessed sessions
|
|
*/
|
|
export async function processUnprocessedSessions(batchSize: number | null = null, maxConcurrency: number = 5): Promise<void> {
|
|
process.stdout.write(
|
|
"[ProcessingScheduler] Starting to process unprocessed sessions...\n"
|
|
);
|
|
|
|
// Find sessions that have messages but haven't been processed
|
|
const queryOptions: any = {
|
|
where: {
|
|
AND: [
|
|
{ messages: { some: {} } }, // Must have messages
|
|
{ processed: false }, // Only unprocessed sessions
|
|
],
|
|
},
|
|
include: {
|
|
messages: {
|
|
orderBy: { order: "asc" },
|
|
},
|
|
},
|
|
};
|
|
|
|
// Add batch size limit if specified
|
|
if (batchSize && batchSize > 0) {
|
|
queryOptions.take = batchSize;
|
|
}
|
|
|
|
const sessionsToProcess = await prisma.session.findMany(queryOptions);
|
|
|
|
// Filter to only sessions that have messages
|
|
const sessionsWithMessages = sessionsToProcess.filter(
|
|
(session: any) => session.messages && session.messages.length > 0
|
|
);
|
|
|
|
if (sessionsWithMessages.length === 0) {
|
|
process.stdout.write(
|
|
"[ProcessingScheduler] No sessions found requiring processing.\n"
|
|
);
|
|
return;
|
|
}
|
|
|
|
process.stdout.write(
|
|
`[ProcessingScheduler] Found ${sessionsWithMessages.length} sessions to process (max concurrency: ${maxConcurrency}).\n`
|
|
);
|
|
|
|
const startTime = Date.now();
|
|
const results = await processSessionsInParallel(sessionsWithMessages, maxConcurrency);
|
|
const endTime = Date.now();
|
|
|
|
const successCount = results.filter((r) => r.success).length;
|
|
const errorCount = results.filter((r) => !r.success).length;
|
|
|
|
process.stdout.write("[ProcessingScheduler] Session processing complete.\n");
|
|
process.stdout.write(
|
|
`[ProcessingScheduler] Successfully processed: ${successCount} sessions.\n`
|
|
);
|
|
process.stdout.write(
|
|
`[ProcessingScheduler] Failed to process: ${errorCount} sessions.\n`
|
|
);
|
|
process.stdout.write(
|
|
`[ProcessingScheduler] Total processing time: ${((endTime - startTime) / 1000).toFixed(2)}s\n`
|
|
);
|
|
}
|
|
|
|
/**
|
|
* Start the processing scheduler with configurable settings
|
|
*/
|
|
export function startProcessingScheduler(): void {
|
|
const config = getSchedulerConfig();
|
|
|
|
if (!config.enabled) {
|
|
console.log('[Processing Scheduler] Disabled via configuration');
|
|
return;
|
|
}
|
|
|
|
console.log(`[Processing Scheduler] Starting with interval: ${config.sessionProcessing.interval}`);
|
|
console.log(`[Processing Scheduler] Batch size: ${config.sessionProcessing.batchSize === 0 ? 'unlimited' : config.sessionProcessing.batchSize}`);
|
|
console.log(`[Processing Scheduler] Concurrency: ${config.sessionProcessing.concurrency}`);
|
|
|
|
cron.schedule(config.sessionProcessing.interval, async () => {
|
|
try {
|
|
await processUnprocessedSessions(
|
|
config.sessionProcessing.batchSize === 0 ? null : config.sessionProcessing.batchSize,
|
|
config.sessionProcessing.concurrency
|
|
);
|
|
} catch (error) {
|
|
process.stderr.write(
|
|
`[ProcessingScheduler] Error in scheduler: ${error}\n`
|
|
);
|
|
}
|
|
});
|
|
}
|