Files
livedash-node/lib/processingScheduler.ts
Max Kowalski 2dfc49f840 DB refactor
2025-06-27 23:05:46 +02:00

591 lines
18 KiB
TypeScript

// Enhanced session processing scheduler with AI cost tracking and question management
import cron from "node-cron";
import { PrismaClient, SentimentCategory, SessionCategory } from "@prisma/client";
import fetch from "node-fetch";
import { getSchedulerConfig } from "./schedulerConfig";
const prisma = new PrismaClient();
const OPENAI_API_KEY = process.env.OPENAI_API_KEY;
const OPENAI_API_URL = "https://api.openai.com/v1/chat/completions";
const DEFAULT_MODEL = process.env.OPENAI_MODEL || "gpt-4o";
const USD_TO_EUR_RATE = 0.85; // Update periodically or fetch from API
/**
* Get company's default AI model
*/
async function getCompanyAIModel(companyId: string): Promise<string> {
const companyModel = await prisma.companyAIModel.findFirst({
where: {
companyId,
isDefault: true,
},
include: {
aiModel: true,
},
});
return companyModel?.aiModel.name || DEFAULT_MODEL;
}
/**
* Get current pricing for an AI model
*/
async function getCurrentModelPricing(modelName: string): Promise<{
promptTokenCost: number;
completionTokenCost: number;
} | null> {
const model = await prisma.aIModel.findUnique({
where: { name: modelName },
include: {
pricing: {
where: {
effectiveFrom: { lte: new Date() },
OR: [
{ effectiveUntil: null },
{ effectiveUntil: { gte: new Date() } }
]
},
orderBy: { effectiveFrom: 'desc' },
take: 1,
},
},
});
if (!model || model.pricing.length === 0) {
return null;
}
const pricing = model.pricing[0];
return {
promptTokenCost: pricing.promptTokenCost,
completionTokenCost: pricing.completionTokenCost,
};
}
interface ProcessedData {
language: string;
sentiment: "POSITIVE" | "NEUTRAL" | "NEGATIVE";
escalated: boolean;
forwarded_hr: boolean;
category: "SCHEDULE_HOURS" | "LEAVE_VACATION" | "SICK_LEAVE_RECOVERY" | "SALARY_COMPENSATION" | "CONTRACT_HOURS" | "ONBOARDING" | "OFFBOARDING" | "WORKWEAR_STAFF_PASS" | "TEAM_CONTACTS" | "PERSONAL_QUESTIONS" | "ACCESS_LOGIN" | "SOCIAL_QUESTIONS" | "UNRECOGNIZED_OTHER";
questions: string[];
summary: string;
session_id: string;
}
interface ProcessingResult {
sessionId: string;
success: boolean;
error?: string;
}
/**
* Record AI processing request with detailed token tracking
*/
async function recordAIProcessingRequest(
sessionId: string,
openaiResponse: any,
processingType: string = 'session_analysis'
): Promise<void> {
const usage = openaiResponse.usage;
const model = openaiResponse.model;
// Get current pricing from database
const pricing = await getCurrentModelPricing(model);
// Fallback pricing if not found in database
const fallbackPricing = {
promptTokenCost: 0.00001, // $10.00 per 1M tokens (gpt-4-turbo rate)
completionTokenCost: 0.00003, // $30.00 per 1M tokens
};
const finalPricing = pricing || fallbackPricing;
const promptCost = usage.prompt_tokens * finalPricing.promptTokenCost;
const completionCost = usage.completion_tokens * finalPricing.completionTokenCost;
const totalCostUsd = promptCost + completionCost;
const totalCostEur = totalCostUsd * USD_TO_EUR_RATE;
await prisma.aIProcessingRequest.create({
data: {
sessionId,
openaiRequestId: openaiResponse.id,
model: openaiResponse.model,
serviceTier: openaiResponse.service_tier,
systemFingerprint: openaiResponse.system_fingerprint,
promptTokens: usage.prompt_tokens,
completionTokens: usage.completion_tokens,
totalTokens: usage.total_tokens,
// Detailed breakdown
cachedTokens: usage.prompt_tokens_details?.cached_tokens || null,
audioTokensPrompt: usage.prompt_tokens_details?.audio_tokens || null,
reasoningTokens: usage.completion_tokens_details?.reasoning_tokens || null,
audioTokensCompletion: usage.completion_tokens_details?.audio_tokens || null,
acceptedPredictionTokens: usage.completion_tokens_details?.accepted_prediction_tokens || null,
rejectedPredictionTokens: usage.completion_tokens_details?.rejected_prediction_tokens || null,
promptTokenCost: finalPricing.promptTokenCost,
completionTokenCost: finalPricing.completionTokenCost,
totalCostEur,
processingType,
success: true,
completedAt: new Date(),
}
});
}
/**
* Record failed AI processing request
*/
async function recordFailedAIProcessingRequest(
sessionId: string,
processingType: string,
errorMessage: string
): Promise<void> {
await prisma.aIProcessingRequest.create({
data: {
sessionId,
model: 'unknown',
promptTokens: 0,
completionTokens: 0,
totalTokens: 0,
promptTokenCost: 0,
completionTokenCost: 0,
totalCostEur: 0,
processingType,
success: false,
errorMessage,
completedAt: new Date(),
}
});
}
/**
* Process questions into separate Question and SessionQuestion tables
*/
async function processQuestions(sessionId: string, questions: string[]): Promise<void> {
// Clear existing questions for this session
await prisma.sessionQuestion.deleteMany({
where: { sessionId }
});
// Process each question
for (let index = 0; index < questions.length; index++) {
const questionText = questions[index];
if (!questionText.trim()) continue; // Skip empty questions
// Find or create question
const question = await prisma.question.upsert({
where: { content: questionText.trim() },
create: { content: questionText.trim() },
update: {}
});
// Link to session
await prisma.sessionQuestion.create({
data: {
sessionId,
questionId: question.id,
order: index
}
});
}
}
/**
* Calculate messagesSent from actual Message records
*/
async function calculateMessagesSent(sessionId: string): Promise<number> {
const userMessageCount = await prisma.message.count({
where: {
sessionId,
role: { in: ['user', 'User'] } // Handle both cases
}
});
return userMessageCount;
}
/**
* Calculate endTime from latest Message timestamp
*/
async function calculateEndTime(sessionId: string, fallbackEndTime: Date): Promise<Date> {
const latestMessage = await prisma.message.findFirst({
where: { sessionId },
orderBy: { timestamp: 'desc' }
});
return latestMessage?.timestamp || fallbackEndTime;
}
/**
* Processes a session transcript using OpenAI API
*/
async function processTranscriptWithOpenAI(sessionId: string, transcript: string, companyId: string): Promise<ProcessedData> {
if (!OPENAI_API_KEY) {
throw new Error("OPENAI_API_KEY environment variable is not set");
}
// Get company's AI model
const aiModel = await getCompanyAIModel(companyId);
// Updated system message with exact enum values
const systemMessage = `
You are an AI assistant tasked with analyzing chat transcripts.
Extract the following information from the transcript and return it in EXACT JSON format:
{
"language": "ISO 639-1 code (e.g., 'en', 'nl', 'de')",
"sentiment": "POSITIVE|NEUTRAL|NEGATIVE",
"escalated": boolean,
"forwarded_hr": boolean,
"category": "SCHEDULE_HOURS|LEAVE_VACATION|SICK_LEAVE_RECOVERY|SALARY_COMPENSATION|CONTRACT_HOURS|ONBOARDING|OFFBOARDING|WORKWEAR_STAFF_PASS|TEAM_CONTACTS|PERSONAL_QUESTIONS|ACCESS_LOGIN|SOCIAL_QUESTIONS|UNRECOGNIZED_OTHER",
"questions": ["question 1", "question 2", ...],
"summary": "brief summary (10-300 chars)",
"session_id": "${sessionId}"
}
Rules:
- language: Primary language used by the user (ISO 639-1 code)
- sentiment: Overall emotional tone of the conversation
- escalated: Was the issue escalated to a supervisor/manager?
- forwarded_hr: Was HR contact mentioned or provided?
- category: Best fitting category for the main topic (use exact enum values above)
- questions: Up to 5 paraphrased user questions (in English)
- summary: Brief conversation summary (10-300 characters)
IMPORTANT: Use EXACT enum values as specified above.
`;
try {
const response = await fetch(OPENAI_API_URL, {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${OPENAI_API_KEY}`,
},
body: JSON.stringify({
model: aiModel, // Use company's configured AI model
messages: [
{
role: "system",
content: systemMessage,
},
{
role: "user",
content: transcript,
},
],
temperature: 0.3, // Lower temperature for more consistent results
response_format: { type: "json_object" },
}),
});
if (!response.ok) {
const errorText = await response.text();
throw new Error(`OpenAI API error: ${response.status} - ${errorText}`);
}
const openaiResponse: any = await response.json();
// Record the AI processing request for cost tracking
await recordAIProcessingRequest(sessionId, openaiResponse, 'session_analysis');
const processedData = JSON.parse(openaiResponse.choices[0].message.content);
// Validate the response against our expected schema
validateOpenAIResponse(processedData);
return processedData;
} catch (error) {
// Record failed request
await recordFailedAIProcessingRequest(
sessionId,
'session_analysis',
error instanceof Error ? error.message : String(error)
);
process.stderr.write(`Error processing transcript with OpenAI: ${error}\n`);
throw error;
}
}
/**
* Validates the OpenAI response against our expected schema
*/
function validateOpenAIResponse(data: any): void {
const requiredFields = [
"language", "sentiment", "escalated", "forwarded_hr",
"category", "questions", "summary", "session_id"
];
for (const field of requiredFields) {
if (!(field in data)) {
throw new Error(`Missing required field: ${field}`);
}
}
// Validate field types and values
if (typeof data.language !== "string" || !/^[a-z]{2}$/.test(data.language)) {
throw new Error("Invalid language format. Expected ISO 639-1 code (e.g., 'en')");
}
if (!["POSITIVE", "NEUTRAL", "NEGATIVE"].includes(data.sentiment)) {
throw new Error("Invalid sentiment. Expected 'POSITIVE', 'NEUTRAL', or 'NEGATIVE'");
}
if (typeof data.escalated !== "boolean") {
throw new Error("Invalid escalated. Expected boolean");
}
if (typeof data.forwarded_hr !== "boolean") {
throw new Error("Invalid forwarded_hr. Expected boolean");
}
const validCategories = [
"SCHEDULE_HOURS", "LEAVE_VACATION", "SICK_LEAVE_RECOVERY", "SALARY_COMPENSATION",
"CONTRACT_HOURS", "ONBOARDING", "OFFBOARDING", "WORKWEAR_STAFF_PASS",
"TEAM_CONTACTS", "PERSONAL_QUESTIONS", "ACCESS_LOGIN", "SOCIAL_QUESTIONS",
"UNRECOGNIZED_OTHER"
];
if (!validCategories.includes(data.category)) {
throw new Error(`Invalid category. Expected one of: ${validCategories.join(", ")}`);
}
if (!Array.isArray(data.questions)) {
throw new Error("Invalid questions. Expected array of strings");
}
if (typeof data.summary !== "string" || data.summary.length < 10 || data.summary.length > 300) {
throw new Error("Invalid summary. Expected string between 10-300 characters");
}
if (typeof data.session_id !== "string") {
throw new Error("Invalid session_id. Expected string");
}
}
/**
* Process a single session
*/
async function processSingleSession(session: any): Promise<ProcessingResult> {
if (session.messages.length === 0) {
return {
sessionId: session.id,
success: false,
error: "Session has no messages",
};
}
try {
// Convert messages back to transcript format for OpenAI processing
const transcript = session.messages
.map((msg: any) =>
`[${new Date(msg.timestamp)
.toLocaleString("en-GB", {
day: "2-digit",
month: "2-digit",
year: "numeric",
hour: "2-digit",
minute: "2-digit",
second: "2-digit",
})
.replace(",", "")}] ${msg.role}: ${msg.content}`
)
.join("\n");
const processedData = await processTranscriptWithOpenAI(session.id, transcript, session.companyId);
// Calculate messagesSent from actual Message records
const messagesSent = await calculateMessagesSent(session.id);
// Calculate endTime from latest Message timestamp
const calculatedEndTime = await calculateEndTime(session.id, session.endTime);
// Process questions into separate tables
await processQuestions(session.id, processedData.questions);
// Update the session with processed data
await prisma.session.update({
where: { id: session.id },
data: {
language: processedData.language,
messagesSent: messagesSent, // Calculated from Messages, not AI
endTime: calculatedEndTime, // Use calculated endTime if different
sentiment: processedData.sentiment as SentimentCategory,
escalated: processedData.escalated,
forwardedHr: processedData.forwarded_hr,
category: processedData.category as SessionCategory,
summary: processedData.summary,
processed: true,
},
});
return {
sessionId: session.id,
success: true,
};
} catch (error) {
return {
sessionId: session.id,
success: false,
error: error instanceof Error ? error.message : String(error),
};
}
}
/**
* Process sessions in parallel with concurrency limit
*/
async function processSessionsInParallel(sessions: any[], maxConcurrency: number = 5): Promise<ProcessingResult[]> {
const results: Promise<ProcessingResult>[] = [];
const executing: Promise<ProcessingResult>[] = [];
for (const session of sessions) {
const promise = processSingleSession(session).then((result) => {
process.stdout.write(
result.success
? `[ProcessingScheduler] ✓ Successfully processed session ${result.sessionId}\n`
: `[ProcessingScheduler] ✗ Failed to process session ${result.sessionId}: ${result.error}\n`
);
return result;
});
results.push(promise);
executing.push(promise);
if (executing.length >= maxConcurrency) {
await Promise.race(executing);
const completedIndex = executing.findIndex(p => p === promise);
if (completedIndex !== -1) {
executing.splice(completedIndex, 1);
}
}
}
return Promise.all(results);
}
/**
* Process unprocessed sessions
*/
export async function processUnprocessedSessions(batchSize: number | null = null, maxConcurrency: number = 5): Promise<void> {
process.stdout.write("[ProcessingScheduler] Starting to process unprocessed sessions...\n");
// Find sessions that have messages but haven't been processed
const queryOptions: any = {
where: {
AND: [
{ messages: { some: {} } }, // Must have messages
{ processed: false }, // Only unprocessed sessions
],
},
include: {
messages: {
orderBy: { order: "asc" },
},
},
};
// Add batch size limit if specified
if (batchSize && batchSize > 0) {
queryOptions.take = batchSize;
}
const sessionsToProcess = await prisma.session.findMany(queryOptions);
// Filter to only sessions that have messages
const sessionsWithMessages = sessionsToProcess.filter(
(session: any) => session.messages && session.messages.length > 0
);
if (sessionsWithMessages.length === 0) {
process.stdout.write("[ProcessingScheduler] No sessions found requiring processing.\n");
return;
}
process.stdout.write(
`[ProcessingScheduler] Found ${sessionsWithMessages.length} sessions to process (max concurrency: ${maxConcurrency}).\n`
);
const startTime = Date.now();
const results = await processSessionsInParallel(sessionsWithMessages, maxConcurrency);
const endTime = Date.now();
const successCount = results.filter((r) => r.success).length;
const errorCount = results.filter((r) => !r.success).length;
process.stdout.write("[ProcessingScheduler] Session processing complete.\n");
process.stdout.write(`[ProcessingScheduler] Successfully processed: ${successCount} sessions.\n`);
process.stdout.write(`[ProcessingScheduler] Failed to process: ${errorCount} sessions.\n`);
process.stdout.write(`[ProcessingScheduler] Total processing time: ${((endTime - startTime) / 1000).toFixed(2)}s\n`);
}
/**
* Get total AI processing costs for reporting
*/
export async function getAIProcessingCosts(): Promise<{
totalCostEur: number;
totalTokens: number;
requestCount: number;
successfulRequests: number;
failedRequests: number;
}> {
const result = await prisma.aIProcessingRequest.aggregate({
_sum: {
totalCostEur: true,
totalTokens: true,
},
_count: {
id: true,
},
});
const successfulRequests = await prisma.aIProcessingRequest.count({
where: { success: true }
});
const failedRequests = await prisma.aIProcessingRequest.count({
where: { success: false }
});
return {
totalCostEur: result._sum.totalCostEur || 0,
totalTokens: result._sum.totalTokens || 0,
requestCount: result._count.id || 0,
successfulRequests,
failedRequests,
};
}
/**
* Start the processing scheduler with configurable settings
*/
export function startProcessingScheduler(): void {
const config = getSchedulerConfig();
if (!config.enabled) {
console.log('[Processing Scheduler] Disabled via configuration');
return;
}
console.log(`[Processing Scheduler] Starting with interval: ${config.sessionProcessing.interval}`);
console.log(`[Processing Scheduler] Batch size: ${config.sessionProcessing.batchSize === 0 ? 'unlimited' : config.sessionProcessing.batchSize}`);
console.log(`[Processing Scheduler] Concurrency: ${config.sessionProcessing.concurrency}`);
cron.schedule(config.sessionProcessing.interval, async () => {
try {
await processUnprocessedSessions(
config.sessionProcessing.batchSize === 0 ? null : config.sessionProcessing.batchSize,
config.sessionProcessing.concurrency
);
} catch (error) {
process.stderr.write(`[ProcessingScheduler] Error in scheduler: ${error}\n`);
}
});
}