mirror of
https://github.com/kjanat/livedash-node.git
synced 2026-01-16 18:12:08 +01:00
- Add AIBatchRequest and AIRequestStatus models to Prisma schema - Create comprehensive batch processing system (lib/batchProcessor.ts) - Add intelligent batch scheduler with automated management - Update processing pipeline to use batch requests instead of direct API calls - Integrate batch scheduler into main server startup - Achieve 50% cost reduction on OpenAI API usage - Improve rate limiting and processing reliability
547 lines
15 KiB
TypeScript
547 lines
15 KiB
TypeScript
/**
|
|
* OpenAI Batch API Processing Utilities
|
|
*
|
|
* This module implements Phase 1 of the AI Session Processing Pipeline refactor
|
|
* to use OpenAI's Batch API for cost-efficient processing of AI requests.
|
|
*
|
|
* Key benefits:
|
|
* - 50% cost reduction compared to real-time API calls
|
|
* - Better rate limiting and throughput management
|
|
* - Improved error handling and retry mechanisms
|
|
*/
|
|
|
|
import { prisma } from "./prisma";
|
|
import { AIBatchRequestStatus, AIRequestStatus, type AIProcessingRequest } from "@prisma/client";
|
|
|
|
/**
|
|
* Configuration for batch processing
|
|
*/
|
|
const BATCH_CONFIG = {
|
|
// Maximum number of requests per batch (OpenAI limit is 50,000)
|
|
MAX_REQUESTS_PER_BATCH: 1000,
|
|
// Minimum time to wait before checking batch status (in milliseconds)
|
|
MIN_STATUS_CHECK_INTERVAL: 60000, // 1 minute
|
|
// Maximum time to wait for a batch to complete (24 hours)
|
|
MAX_BATCH_TIMEOUT: 24 * 60 * 60 * 1000,
|
|
} as const;
|
|
|
|
/**
|
|
* Represents a single request in an OpenAI batch
|
|
*/
|
|
interface OpenAIBatchRequest {
|
|
custom_id: string;
|
|
method: "POST";
|
|
url: "/v1/chat/completions";
|
|
body: {
|
|
model: string;
|
|
messages: Array<{
|
|
role: string;
|
|
content: string;
|
|
}>;
|
|
temperature?: number;
|
|
max_tokens?: number;
|
|
};
|
|
}
|
|
|
|
/**
|
|
* OpenAI Batch API response format
|
|
*/
|
|
interface OpenAIBatchResponse {
|
|
id: string;
|
|
object: "batch";
|
|
endpoint: string;
|
|
errors: {
|
|
object: "list";
|
|
data: Array<{
|
|
code: string;
|
|
message: string;
|
|
param?: string;
|
|
type: string;
|
|
}>;
|
|
};
|
|
input_file_id: string;
|
|
completion_window: string;
|
|
status: "validating" | "failed" | "in_progress" | "finalizing" | "completed" | "expired" | "cancelling" | "cancelled";
|
|
output_file_id?: string;
|
|
error_file_id?: string;
|
|
created_at: number;
|
|
in_progress_at?: number;
|
|
expires_at?: number;
|
|
finalizing_at?: number;
|
|
completed_at?: number;
|
|
failed_at?: number;
|
|
expired_at?: number;
|
|
cancelling_at?: number;
|
|
cancelled_at?: number;
|
|
request_counts: {
|
|
total: number;
|
|
completed: number;
|
|
failed: number;
|
|
};
|
|
metadata?: Record<string, string>;
|
|
}
|
|
|
|
/**
|
|
* Get pending AI processing requests that need to be batched
|
|
*/
|
|
export async function getPendingBatchRequests(
|
|
companyId: string,
|
|
limit: number = BATCH_CONFIG.MAX_REQUESTS_PER_BATCH
|
|
): Promise<AIProcessingRequest[]> {
|
|
return prisma.aIProcessingRequest.findMany({
|
|
where: {
|
|
session: {
|
|
companyId,
|
|
},
|
|
processingStatus: AIRequestStatus.PENDING_BATCHING,
|
|
batchId: null,
|
|
},
|
|
include: {
|
|
session: {
|
|
include: {
|
|
messages: {
|
|
orderBy: { order: "asc" },
|
|
},
|
|
},
|
|
},
|
|
},
|
|
take: limit,
|
|
orderBy: {
|
|
requestedAt: "asc",
|
|
},
|
|
}) as Promise<(AIProcessingRequest & {
|
|
session: {
|
|
id: string;
|
|
companyId: string;
|
|
messages: Array<{
|
|
id: string;
|
|
role: string;
|
|
content: string;
|
|
order: number;
|
|
}>;
|
|
} | null;
|
|
})[]>;
|
|
}
|
|
|
|
/**
|
|
* Create a new batch request and upload to OpenAI
|
|
*/
|
|
export async function createBatchRequest(
|
|
companyId: string,
|
|
requests: AIProcessingRequest[]
|
|
): Promise<string> {
|
|
if (requests.length === 0) {
|
|
throw new Error("Cannot create batch with no requests");
|
|
}
|
|
|
|
if (requests.length > BATCH_CONFIG.MAX_REQUESTS_PER_BATCH) {
|
|
throw new Error(`Batch size ${requests.length} exceeds maximum of ${BATCH_CONFIG.MAX_REQUESTS_PER_BATCH}`);
|
|
}
|
|
|
|
// Create batch requests in OpenAI format
|
|
const batchRequests: OpenAIBatchRequest[] = requests.map((request) => ({
|
|
custom_id: request.id,
|
|
method: "POST",
|
|
url: "/v1/chat/completions",
|
|
body: {
|
|
model: request.model,
|
|
messages: [
|
|
{
|
|
role: "system",
|
|
content: getSystemPromptForProcessingType(request.processingType),
|
|
},
|
|
{
|
|
role: "user",
|
|
content: formatMessagesForProcessing(request.session?.messages || []),
|
|
},
|
|
],
|
|
temperature: 0.1,
|
|
max_tokens: 1000,
|
|
},
|
|
}));
|
|
|
|
// Convert to JSONL format for OpenAI
|
|
const jsonlContent = batchRequests
|
|
.map((req) => JSON.stringify(req))
|
|
.join("\n");
|
|
|
|
// Upload file to OpenAI
|
|
const fileResponse = await uploadFileToOpenAI(jsonlContent);
|
|
|
|
// Create batch on OpenAI
|
|
const batchResponse = await createOpenAIBatch(fileResponse.id);
|
|
|
|
// Store batch request in our database
|
|
const batchRequest = await prisma.aIBatchRequest.create({
|
|
data: {
|
|
companyId,
|
|
openaiBatchId: batchResponse.id,
|
|
inputFileId: fileResponse.id,
|
|
status: AIBatchRequestStatus.IN_PROGRESS,
|
|
processingRequests: {
|
|
connect: requests.map((req) => ({ id: req.id })),
|
|
},
|
|
},
|
|
});
|
|
|
|
// Update individual requests to mark them as batching
|
|
await prisma.aIProcessingRequest.updateMany({
|
|
where: {
|
|
id: {
|
|
in: requests.map((req) => req.id),
|
|
},
|
|
},
|
|
data: {
|
|
processingStatus: AIRequestStatus.BATCHING_IN_PROGRESS,
|
|
batchId: batchRequest.id,
|
|
},
|
|
});
|
|
|
|
return batchRequest.id;
|
|
}
|
|
|
|
/**
|
|
* Check the status of all in-progress batches for a company
|
|
*/
|
|
export async function checkBatchStatuses(companyId: string): Promise<void> {
|
|
const inProgressBatches = await prisma.aIBatchRequest.findMany({
|
|
where: {
|
|
companyId,
|
|
status: {
|
|
in: [
|
|
AIBatchRequestStatus.IN_PROGRESS,
|
|
AIBatchRequestStatus.VALIDATING,
|
|
AIBatchRequestStatus.FINALIZING,
|
|
],
|
|
},
|
|
},
|
|
});
|
|
|
|
for (const batch of inProgressBatches) {
|
|
try {
|
|
const status = await getOpenAIBatchStatus(batch.openaiBatchId);
|
|
await updateBatchStatus(batch.id, status);
|
|
} catch (error) {
|
|
console.error(`Failed to check status for batch ${batch.id}:`, error);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Process completed batches and extract results
|
|
*/
|
|
export async function processCompletedBatches(companyId: string): Promise<void> {
|
|
const completedBatches = await prisma.aIBatchRequest.findMany({
|
|
where: {
|
|
companyId,
|
|
status: AIBatchRequestStatus.COMPLETED,
|
|
outputFileId: {
|
|
not: null,
|
|
},
|
|
},
|
|
include: {
|
|
processingRequests: {
|
|
include: {
|
|
session: true,
|
|
},
|
|
},
|
|
},
|
|
});
|
|
|
|
for (const batch of completedBatches) {
|
|
try {
|
|
await processBatchResults(batch);
|
|
} catch (error) {
|
|
console.error(`Failed to process batch results for ${batch.id}:`, error);
|
|
await prisma.aIBatchRequest.update({
|
|
where: { id: batch.id },
|
|
data: { status: AIBatchRequestStatus.FAILED },
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper function to upload file content to OpenAI
|
|
*/
|
|
async function uploadFileToOpenAI(content: string): Promise<{ id: string }> {
|
|
const formData = new FormData();
|
|
formData.append("file", new Blob([content], { type: "application/jsonl" }), "batch_requests.jsonl");
|
|
formData.append("purpose", "batch");
|
|
|
|
const response = await fetch("https://api.openai.com/v1/files", {
|
|
method: "POST",
|
|
headers: {
|
|
"Authorization": `Bearer ${process.env.OPENAI_API_KEY}`,
|
|
},
|
|
body: formData,
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error(`Failed to upload file: ${response.statusText}`);
|
|
}
|
|
|
|
return response.json();
|
|
}
|
|
|
|
/**
|
|
* Helper function to create a batch request on OpenAI
|
|
*/
|
|
async function createOpenAIBatch(inputFileId: string): Promise<OpenAIBatchResponse> {
|
|
const response = await fetch("https://api.openai.com/v1/batches", {
|
|
method: "POST",
|
|
headers: {
|
|
"Authorization": `Bearer ${process.env.OPENAI_API_KEY}`,
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify({
|
|
input_file_id: inputFileId,
|
|
endpoint: "/v1/chat/completions",
|
|
completion_window: "24h",
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error(`Failed to create batch: ${response.statusText}`);
|
|
}
|
|
|
|
return response.json();
|
|
}
|
|
|
|
/**
|
|
* Helper function to get batch status from OpenAI
|
|
*/
|
|
async function getOpenAIBatchStatus(batchId: string): Promise<OpenAIBatchResponse> {
|
|
const response = await fetch(`https://api.openai.com/v1/batches/${batchId}`, {
|
|
method: "GET",
|
|
headers: {
|
|
"Authorization": `Bearer ${process.env.OPENAI_API_KEY}`,
|
|
},
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error(`Failed to get batch status: ${response.statusText}`);
|
|
}
|
|
|
|
return response.json();
|
|
}
|
|
|
|
/**
|
|
* Update batch status in our database based on OpenAI response
|
|
*/
|
|
async function updateBatchStatus(batchId: string, openAIResponse: OpenAIBatchResponse): Promise<void> {
|
|
const statusMapping: Record<string, AIBatchRequestStatus> = {
|
|
validating: AIBatchRequestStatus.VALIDATING,
|
|
failed: AIBatchRequestStatus.FAILED,
|
|
in_progress: AIBatchRequestStatus.IN_PROGRESS,
|
|
finalizing: AIBatchRequestStatus.FINALIZING,
|
|
completed: AIBatchRequestStatus.COMPLETED,
|
|
expired: AIBatchRequestStatus.FAILED,
|
|
cancelled: AIBatchRequestStatus.CANCELLED,
|
|
};
|
|
|
|
const ourStatus = statusMapping[openAIResponse.status] || AIBatchRequestStatus.FAILED;
|
|
|
|
await prisma.aIBatchRequest.update({
|
|
where: { id: batchId },
|
|
data: {
|
|
status: ourStatus,
|
|
outputFileId: openAIResponse.output_file_id,
|
|
errorFileId: openAIResponse.error_file_id,
|
|
completedAt: openAIResponse.completed_at ? new Date(openAIResponse.completed_at * 1000) : null,
|
|
},
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Process results from a completed batch
|
|
*/
|
|
async function processBatchResults(batch: {
|
|
id: string;
|
|
outputFileId: string | null;
|
|
processingRequests: Array<{ sessionId: string }>;
|
|
}): Promise<void> {
|
|
if (!batch.outputFileId) {
|
|
throw new Error("No output file available for completed batch");
|
|
}
|
|
|
|
// Download results from OpenAI
|
|
const results = await downloadOpenAIFile(batch.outputFileId);
|
|
|
|
// Parse JSONL results
|
|
const resultLines = results.split("\n").filter(line => line.trim());
|
|
|
|
for (const line of resultLines) {
|
|
try {
|
|
const result = JSON.parse(line);
|
|
const requestId = result.custom_id;
|
|
|
|
if (result.response?.body?.choices?.[0]?.message?.content) {
|
|
// Process successful result
|
|
await updateProcessingRequestWithResult(requestId, result.response.body);
|
|
} else {
|
|
// Handle error result
|
|
await markProcessingRequestAsFailed(requestId, result.error?.message || "Unknown error");
|
|
}
|
|
} catch (error) {
|
|
console.error("Failed to process batch result line:", error);
|
|
}
|
|
}
|
|
|
|
// Mark batch as processed
|
|
await prisma.aIBatchRequest.update({
|
|
where: { id: batch.id },
|
|
data: {
|
|
status: AIBatchRequestStatus.PROCESSED,
|
|
processedAt: new Date(),
|
|
},
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Download file content from OpenAI
|
|
*/
|
|
async function downloadOpenAIFile(fileId: string): Promise<string> {
|
|
const response = await fetch(`https://api.openai.com/v1/files/${fileId}/content`, {
|
|
method: "GET",
|
|
headers: {
|
|
"Authorization": `Bearer ${process.env.OPENAI_API_KEY}`,
|
|
},
|
|
});
|
|
|
|
if (!response.ok) {
|
|
throw new Error(`Failed to download file: ${response.statusText}`);
|
|
}
|
|
|
|
return response.text();
|
|
}
|
|
|
|
/**
|
|
* Update processing request with successful AI result
|
|
*/
|
|
async function updateProcessingRequestWithResult(requestId: string, aiResponse: {
|
|
usage: {
|
|
prompt_tokens: number;
|
|
completion_tokens: number;
|
|
total_tokens: number;
|
|
};
|
|
choices: Array<{
|
|
message: {
|
|
content: string;
|
|
};
|
|
}>;
|
|
}): Promise<void> {
|
|
const usage = aiResponse.usage;
|
|
const content = aiResponse.choices[0].message.content;
|
|
|
|
try {
|
|
const parsedResult = JSON.parse(content);
|
|
|
|
// Update the processing request with usage data
|
|
await prisma.aIProcessingRequest.update({
|
|
where: { id: requestId },
|
|
data: {
|
|
processingStatus: AIRequestStatus.PROCESSING_COMPLETE,
|
|
success: true,
|
|
promptTokens: usage.prompt_tokens,
|
|
completionTokens: usage.completion_tokens,
|
|
totalTokens: usage.total_tokens,
|
|
completedAt: new Date(),
|
|
},
|
|
});
|
|
|
|
// Update the session with AI analysis results
|
|
const request = await prisma.aIProcessingRequest.findUnique({
|
|
where: { id: requestId },
|
|
include: { session: true },
|
|
});
|
|
|
|
if (request?.session) {
|
|
await prisma.session.update({
|
|
where: { id: request.sessionId },
|
|
data: {
|
|
summary: parsedResult.summary,
|
|
sentiment: parsedResult.sentiment,
|
|
category: parsedResult.category,
|
|
language: parsedResult.language,
|
|
},
|
|
});
|
|
}
|
|
} catch (error) {
|
|
console.error(`Failed to parse AI result for request ${requestId}:`, error);
|
|
await markProcessingRequestAsFailed(requestId, "Failed to parse AI response");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Mark processing request as failed
|
|
*/
|
|
async function markProcessingRequestAsFailed(requestId: string, errorMessage: string): Promise<void> {
|
|
await prisma.aIProcessingRequest.update({
|
|
where: { id: requestId },
|
|
data: {
|
|
processingStatus: AIRequestStatus.PROCESSING_FAILED,
|
|
success: false,
|
|
errorMessage,
|
|
completedAt: new Date(),
|
|
},
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Get system prompt based on processing type
|
|
*/
|
|
function getSystemPromptForProcessingType(processingType: string): string {
|
|
const prompts = {
|
|
sentiment_analysis: "Analyze the sentiment of this conversation and respond with JSON containing: {\"sentiment\": \"POSITIVE|NEUTRAL|NEGATIVE\"}",
|
|
categorization: "Categorize this conversation and respond with JSON containing: {\"category\": \"CATEGORY_NAME\"}",
|
|
summary: "Summarize this conversation and respond with JSON containing: {\"summary\": \"Brief summary\"}",
|
|
full_analysis: `Analyze this conversation for sentiment, category, and provide a summary. Respond with JSON:
|
|
{
|
|
"sentiment": "POSITIVE|NEUTRAL|NEGATIVE",
|
|
"category": "SCHEDULE_HOURS|LEAVE_VACATION|SICK_LEAVE_RECOVERY|SALARY_COMPENSATION|CONTRACT_HOURS|ONBOARDING|OFFBOARDING|WORKWEAR_STAFF_PASS|TEAM_CONTACTS|PERSONAL_QUESTIONS|ACCESS_LOGIN|SOCIAL_QUESTIONS|UNRECOGNIZED_OTHER",
|
|
"summary": "Brief summary of the conversation",
|
|
"language": "en|de|fr|es|it|pt|nl|sv|da|no|fi|pl|cs|sk|hu|ro|bg|hr|sl|et|lv|lt|el|mt"
|
|
}`,
|
|
};
|
|
|
|
return prompts[processingType as keyof typeof prompts] || prompts.full_analysis;
|
|
}
|
|
|
|
/**
|
|
* Format session messages for AI processing
|
|
*/
|
|
function formatMessagesForProcessing(messages: Array<{
|
|
role: string;
|
|
content: string;
|
|
}>): string {
|
|
return messages
|
|
.map((msg) => `${msg.role}: ${msg.content}`)
|
|
.join("\n");
|
|
}
|
|
|
|
/**
|
|
* Get statistics about batch processing
|
|
*/
|
|
export async function getBatchProcessingStats(companyId: string) {
|
|
const stats = await prisma.aIBatchRequest.groupBy({
|
|
by: ["status"],
|
|
where: { companyId },
|
|
_count: true,
|
|
});
|
|
|
|
const pendingRequests = await prisma.aIProcessingRequest.count({
|
|
where: {
|
|
session: { companyId },
|
|
processingStatus: AIRequestStatus.PENDING_BATCHING,
|
|
},
|
|
});
|
|
|
|
return {
|
|
batchStats: stats.reduce((acc, stat) => {
|
|
acc[stat.status] = stat._count;
|
|
return acc;
|
|
}, {} as Record<string, number>),
|
|
pendingRequests,
|
|
};
|
|
} |