mirror of
https://github.com/kjanat/livedash-node.git
synced 2026-01-16 16:12:10 +01:00
- Updated environment configuration to include Postgres database settings. - Enhanced import processing to minimize field copying and rely on AI for analysis. - Implemented detailed AI processing request tracking, including token usage and costs. - Added new models for Question and SessionQuestion to manage user inquiries separately. - Improved session processing scheduler with AI cost reporting functionality. - Created a test script to validate the refactored pipeline and display processing statistics. - Updated Prisma schema and migration files to reflect new database structure and relationships.
541 lines
17 KiB
TypeScript
541 lines
17 KiB
TypeScript
// Enhanced session processing scheduler with AI cost tracking and question management
|
|
import cron from "node-cron";
|
|
import { PrismaClient, SentimentCategory, SessionCategory } from "@prisma/client";
|
|
import fetch from "node-fetch";
|
|
import { getSchedulerConfig } from "./schedulerConfig";
|
|
|
|
const prisma = new PrismaClient();
|
|
const OPENAI_API_KEY = process.env.OPENAI_API_KEY;
|
|
const OPENAI_API_URL = "https://api.openai.com/v1/chat/completions";
|
|
|
|
// Model pricing in USD (update as needed)
|
|
const MODEL_PRICING = {
|
|
'gpt-4o-2024-08-06': {
|
|
promptTokenCost: 0.0000025, // $2.50 per 1M tokens
|
|
completionTokenCost: 0.00001, // $10.00 per 1M tokens
|
|
},
|
|
'gpt-4-turbo': {
|
|
promptTokenCost: 0.00001, // $10.00 per 1M tokens
|
|
completionTokenCost: 0.00003, // $30.00 per 1M tokens
|
|
},
|
|
'gpt-4o': {
|
|
promptTokenCost: 0.000005, // $5.00 per 1M tokens
|
|
completionTokenCost: 0.000015, // $15.00 per 1M tokens
|
|
}
|
|
} as const;
|
|
|
|
const USD_TO_EUR_RATE = 0.85; // Update periodically or fetch from API
|
|
|
|
interface ProcessedData {
|
|
language: string;
|
|
sentiment: "POSITIVE" | "NEUTRAL" | "NEGATIVE";
|
|
escalated: boolean;
|
|
forwarded_hr: boolean;
|
|
category: "SCHEDULE_HOURS" | "LEAVE_VACATION" | "SICK_LEAVE_RECOVERY" | "SALARY_COMPENSATION" | "CONTRACT_HOURS" | "ONBOARDING" | "OFFBOARDING" | "WORKWEAR_STAFF_PASS" | "TEAM_CONTACTS" | "PERSONAL_QUESTIONS" | "ACCESS_LOGIN" | "SOCIAL_QUESTIONS" | "UNRECOGNIZED_OTHER";
|
|
questions: string[];
|
|
summary: string;
|
|
session_id: string;
|
|
}
|
|
|
|
interface ProcessingResult {
|
|
sessionId: string;
|
|
success: boolean;
|
|
error?: string;
|
|
}
|
|
|
|
/**
|
|
* Record AI processing request with detailed token tracking
|
|
*/
|
|
async function recordAIProcessingRequest(
|
|
sessionId: string,
|
|
openaiResponse: any,
|
|
processingType: string = 'session_analysis'
|
|
): Promise<void> {
|
|
const usage = openaiResponse.usage;
|
|
const model = openaiResponse.model;
|
|
const pricing = MODEL_PRICING[model as keyof typeof MODEL_PRICING] || MODEL_PRICING['gpt-4-turbo']; // fallback
|
|
|
|
const promptCost = usage.prompt_tokens * pricing.promptTokenCost;
|
|
const completionCost = usage.completion_tokens * pricing.completionTokenCost;
|
|
const totalCostUsd = promptCost + completionCost;
|
|
const totalCostEur = totalCostUsd * USD_TO_EUR_RATE;
|
|
|
|
await prisma.aIProcessingRequest.create({
|
|
data: {
|
|
sessionId,
|
|
openaiRequestId: openaiResponse.id,
|
|
model: openaiResponse.model,
|
|
serviceTier: openaiResponse.service_tier,
|
|
systemFingerprint: openaiResponse.system_fingerprint,
|
|
|
|
promptTokens: usage.prompt_tokens,
|
|
completionTokens: usage.completion_tokens,
|
|
totalTokens: usage.total_tokens,
|
|
|
|
// Detailed breakdown
|
|
cachedTokens: usage.prompt_tokens_details?.cached_tokens || null,
|
|
audioTokensPrompt: usage.prompt_tokens_details?.audio_tokens || null,
|
|
reasoningTokens: usage.completion_tokens_details?.reasoning_tokens || null,
|
|
audioTokensCompletion: usage.completion_tokens_details?.audio_tokens || null,
|
|
acceptedPredictionTokens: usage.completion_tokens_details?.accepted_prediction_tokens || null,
|
|
rejectedPredictionTokens: usage.completion_tokens_details?.rejected_prediction_tokens || null,
|
|
|
|
promptTokenCost: pricing.promptTokenCost,
|
|
completionTokenCost: pricing.completionTokenCost,
|
|
totalCostEur,
|
|
|
|
processingType,
|
|
success: true,
|
|
completedAt: new Date(),
|
|
}
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Record failed AI processing request
|
|
*/
|
|
async function recordFailedAIProcessingRequest(
|
|
sessionId: string,
|
|
processingType: string,
|
|
errorMessage: string
|
|
): Promise<void> {
|
|
await prisma.aIProcessingRequest.create({
|
|
data: {
|
|
sessionId,
|
|
model: 'unknown',
|
|
promptTokens: 0,
|
|
completionTokens: 0,
|
|
totalTokens: 0,
|
|
promptTokenCost: 0,
|
|
completionTokenCost: 0,
|
|
totalCostEur: 0,
|
|
processingType,
|
|
success: false,
|
|
errorMessage,
|
|
completedAt: new Date(),
|
|
}
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Process questions into separate Question and SessionQuestion tables
|
|
*/
|
|
async function processQuestions(sessionId: string, questions: string[]): Promise<void> {
|
|
// Clear existing questions for this session
|
|
await prisma.sessionQuestion.deleteMany({
|
|
where: { sessionId }
|
|
});
|
|
|
|
// Process each question
|
|
for (let index = 0; index < questions.length; index++) {
|
|
const questionText = questions[index];
|
|
if (!questionText.trim()) continue; // Skip empty questions
|
|
|
|
// Find or create question
|
|
const question = await prisma.question.upsert({
|
|
where: { content: questionText.trim() },
|
|
create: { content: questionText.trim() },
|
|
update: {}
|
|
});
|
|
|
|
// Link to session
|
|
await prisma.sessionQuestion.create({
|
|
data: {
|
|
sessionId,
|
|
questionId: question.id,
|
|
order: index
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate messagesSent from actual Message records
|
|
*/
|
|
async function calculateMessagesSent(sessionId: string): Promise<number> {
|
|
const userMessageCount = await prisma.message.count({
|
|
where: {
|
|
sessionId,
|
|
role: { in: ['user', 'User'] } // Handle both cases
|
|
}
|
|
});
|
|
return userMessageCount;
|
|
}
|
|
|
|
/**
|
|
* Calculate endTime from latest Message timestamp
|
|
*/
|
|
async function calculateEndTime(sessionId: string, fallbackEndTime: Date): Promise<Date> {
|
|
const latestMessage = await prisma.message.findFirst({
|
|
where: { sessionId },
|
|
orderBy: { timestamp: 'desc' }
|
|
});
|
|
|
|
return latestMessage?.timestamp || fallbackEndTime;
|
|
}
|
|
|
|
/**
|
|
* Processes a session transcript using OpenAI API
|
|
*/
|
|
async function processTranscriptWithOpenAI(sessionId: string, transcript: string): Promise<ProcessedData> {
|
|
if (!OPENAI_API_KEY) {
|
|
throw new Error("OPENAI_API_KEY environment variable is not set");
|
|
}
|
|
|
|
// Updated system message with exact enum values
|
|
const systemMessage = `
|
|
You are an AI assistant tasked with analyzing chat transcripts.
|
|
Extract the following information from the transcript and return it in EXACT JSON format:
|
|
|
|
{
|
|
"language": "ISO 639-1 code (e.g., 'en', 'nl', 'de')",
|
|
"sentiment": "POSITIVE|NEUTRAL|NEGATIVE",
|
|
"escalated": boolean,
|
|
"forwarded_hr": boolean,
|
|
"category": "SCHEDULE_HOURS|LEAVE_VACATION|SICK_LEAVE_RECOVERY|SALARY_COMPENSATION|CONTRACT_HOURS|ONBOARDING|OFFBOARDING|WORKWEAR_STAFF_PASS|TEAM_CONTACTS|PERSONAL_QUESTIONS|ACCESS_LOGIN|SOCIAL_QUESTIONS|UNRECOGNIZED_OTHER",
|
|
"questions": ["question 1", "question 2", ...],
|
|
"summary": "brief summary (10-300 chars)",
|
|
"session_id": "${sessionId}"
|
|
}
|
|
|
|
Rules:
|
|
- language: Primary language used by the user (ISO 639-1 code)
|
|
- sentiment: Overall emotional tone of the conversation
|
|
- escalated: Was the issue escalated to a supervisor/manager?
|
|
- forwarded_hr: Was HR contact mentioned or provided?
|
|
- category: Best fitting category for the main topic (use exact enum values above)
|
|
- questions: Up to 5 paraphrased user questions (in English)
|
|
- summary: Brief conversation summary (10-300 characters)
|
|
|
|
IMPORTANT: Use EXACT enum values as specified above.
|
|
`;
|
|
|
|
try {
|
|
const response = await fetch(OPENAI_API_URL, {
|
|
method: "POST",
|
|
headers: {
|
|
"Content-Type": "application/json",
|
|
Authorization: `Bearer ${OPENAI_API_KEY}`,
|
|
},
|
|
body: JSON.stringify({
|
|
model: "gpt-4o", // Use latest model
|
|
messages: [
|
|
{
|
|
role: "system",
|
|
content: systemMessage,
|
|
},
|
|
{
|
|
role: "user",
|
|
content: transcript,
|
|
},
|
|
],
|
|
temperature: 0.3, // Lower temperature for more consistent results
|
|
response_format: { type: "json_object" },
|
|
}),
|
|
});
|
|
|
|
if (!response.ok) {
|
|
const errorText = await response.text();
|
|
throw new Error(`OpenAI API error: ${response.status} - ${errorText}`);
|
|
}
|
|
|
|
const openaiResponse: any = await response.json();
|
|
|
|
// Record the AI processing request for cost tracking
|
|
await recordAIProcessingRequest(sessionId, openaiResponse, 'session_analysis');
|
|
|
|
const processedData = JSON.parse(openaiResponse.choices[0].message.content);
|
|
|
|
// Validate the response against our expected schema
|
|
validateOpenAIResponse(processedData);
|
|
|
|
return processedData;
|
|
} catch (error) {
|
|
// Record failed request
|
|
await recordFailedAIProcessingRequest(
|
|
sessionId,
|
|
'session_analysis',
|
|
error instanceof Error ? error.message : String(error)
|
|
);
|
|
|
|
process.stderr.write(`Error processing transcript with OpenAI: ${error}\n`);
|
|
throw error;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Validates the OpenAI response against our expected schema
|
|
*/
|
|
function validateOpenAIResponse(data: any): void {
|
|
const requiredFields = [
|
|
"language", "sentiment", "escalated", "forwarded_hr",
|
|
"category", "questions", "summary", "session_id"
|
|
];
|
|
|
|
for (const field of requiredFields) {
|
|
if (!(field in data)) {
|
|
throw new Error(`Missing required field: ${field}`);
|
|
}
|
|
}
|
|
|
|
// Validate field types and values
|
|
if (typeof data.language !== "string" || !/^[a-z]{2}$/.test(data.language)) {
|
|
throw new Error("Invalid language format. Expected ISO 639-1 code (e.g., 'en')");
|
|
}
|
|
|
|
if (!["POSITIVE", "NEUTRAL", "NEGATIVE"].includes(data.sentiment)) {
|
|
throw new Error("Invalid sentiment. Expected 'POSITIVE', 'NEUTRAL', or 'NEGATIVE'");
|
|
}
|
|
|
|
if (typeof data.escalated !== "boolean") {
|
|
throw new Error("Invalid escalated. Expected boolean");
|
|
}
|
|
|
|
if (typeof data.forwarded_hr !== "boolean") {
|
|
throw new Error("Invalid forwarded_hr. Expected boolean");
|
|
}
|
|
|
|
const validCategories = [
|
|
"SCHEDULE_HOURS", "LEAVE_VACATION", "SICK_LEAVE_RECOVERY", "SALARY_COMPENSATION",
|
|
"CONTRACT_HOURS", "ONBOARDING", "OFFBOARDING", "WORKWEAR_STAFF_PASS",
|
|
"TEAM_CONTACTS", "PERSONAL_QUESTIONS", "ACCESS_LOGIN", "SOCIAL_QUESTIONS",
|
|
"UNRECOGNIZED_OTHER"
|
|
];
|
|
|
|
if (!validCategories.includes(data.category)) {
|
|
throw new Error(`Invalid category. Expected one of: ${validCategories.join(", ")}`);
|
|
}
|
|
|
|
if (!Array.isArray(data.questions)) {
|
|
throw new Error("Invalid questions. Expected array of strings");
|
|
}
|
|
|
|
if (typeof data.summary !== "string" || data.summary.length < 10 || data.summary.length > 300) {
|
|
throw new Error("Invalid summary. Expected string between 10-300 characters");
|
|
}
|
|
|
|
if (typeof data.session_id !== "string") {
|
|
throw new Error("Invalid session_id. Expected string");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Process a single session
|
|
*/
|
|
async function processSingleSession(session: any): Promise<ProcessingResult> {
|
|
if (session.messages.length === 0) {
|
|
return {
|
|
sessionId: session.id,
|
|
success: false,
|
|
error: "Session has no messages",
|
|
};
|
|
}
|
|
|
|
try {
|
|
// Convert messages back to transcript format for OpenAI processing
|
|
const transcript = session.messages
|
|
.map((msg: any) =>
|
|
`[${new Date(msg.timestamp)
|
|
.toLocaleString("en-GB", {
|
|
day: "2-digit",
|
|
month: "2-digit",
|
|
year: "numeric",
|
|
hour: "2-digit",
|
|
minute: "2-digit",
|
|
second: "2-digit",
|
|
})
|
|
.replace(",", "")}] ${msg.role}: ${msg.content}`
|
|
)
|
|
.join("\n");
|
|
|
|
const processedData = await processTranscriptWithOpenAI(session.id, transcript);
|
|
|
|
// Calculate messagesSent from actual Message records
|
|
const messagesSent = await calculateMessagesSent(session.id);
|
|
|
|
// Calculate endTime from latest Message timestamp
|
|
const calculatedEndTime = await calculateEndTime(session.id, session.endTime);
|
|
|
|
// Process questions into separate tables
|
|
await processQuestions(session.id, processedData.questions);
|
|
|
|
// Update the session with processed data
|
|
await prisma.session.update({
|
|
where: { id: session.id },
|
|
data: {
|
|
language: processedData.language,
|
|
messagesSent: messagesSent, // Calculated from Messages, not AI
|
|
endTime: calculatedEndTime, // Use calculated endTime if different
|
|
sentiment: processedData.sentiment as SentimentCategory,
|
|
escalated: processedData.escalated,
|
|
forwardedHr: processedData.forwarded_hr,
|
|
category: processedData.category as SessionCategory,
|
|
summary: processedData.summary,
|
|
processed: true,
|
|
},
|
|
});
|
|
|
|
return {
|
|
sessionId: session.id,
|
|
success: true,
|
|
};
|
|
} catch (error) {
|
|
return {
|
|
sessionId: session.id,
|
|
success: false,
|
|
error: error instanceof Error ? error.message : String(error),
|
|
};
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Process sessions in parallel with concurrency limit
|
|
*/
|
|
async function processSessionsInParallel(sessions: any[], maxConcurrency: number = 5): Promise<ProcessingResult[]> {
|
|
const results: Promise<ProcessingResult>[] = [];
|
|
const executing: Promise<ProcessingResult>[] = [];
|
|
|
|
for (const session of sessions) {
|
|
const promise = processSingleSession(session).then((result) => {
|
|
process.stdout.write(
|
|
result.success
|
|
? `[ProcessingScheduler] ✓ Successfully processed session ${result.sessionId}\n`
|
|
: `[ProcessingScheduler] ✗ Failed to process session ${result.sessionId}: ${result.error}\n`
|
|
);
|
|
return result;
|
|
});
|
|
|
|
results.push(promise);
|
|
executing.push(promise);
|
|
|
|
if (executing.length >= maxConcurrency) {
|
|
await Promise.race(executing);
|
|
const completedIndex = executing.findIndex(p => p === promise);
|
|
if (completedIndex !== -1) {
|
|
executing.splice(completedIndex, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
return Promise.all(results);
|
|
}
|
|
|
|
/**
|
|
* Process unprocessed sessions
|
|
*/
|
|
export async function processUnprocessedSessions(batchSize: number | null = null, maxConcurrency: number = 5): Promise<void> {
|
|
process.stdout.write("[ProcessingScheduler] Starting to process unprocessed sessions...\n");
|
|
|
|
// Find sessions that have messages but haven't been processed
|
|
const queryOptions: any = {
|
|
where: {
|
|
AND: [
|
|
{ messages: { some: {} } }, // Must have messages
|
|
{ processed: false }, // Only unprocessed sessions
|
|
],
|
|
},
|
|
include: {
|
|
messages: {
|
|
orderBy: { order: "asc" },
|
|
},
|
|
},
|
|
};
|
|
|
|
// Add batch size limit if specified
|
|
if (batchSize && batchSize > 0) {
|
|
queryOptions.take = batchSize;
|
|
}
|
|
|
|
const sessionsToProcess = await prisma.session.findMany(queryOptions);
|
|
|
|
// Filter to only sessions that have messages
|
|
const sessionsWithMessages = sessionsToProcess.filter(
|
|
(session: any) => session.messages && session.messages.length > 0
|
|
);
|
|
|
|
if (sessionsWithMessages.length === 0) {
|
|
process.stdout.write("[ProcessingScheduler] No sessions found requiring processing.\n");
|
|
return;
|
|
}
|
|
|
|
process.stdout.write(
|
|
`[ProcessingScheduler] Found ${sessionsWithMessages.length} sessions to process (max concurrency: ${maxConcurrency}).\n`
|
|
);
|
|
|
|
const startTime = Date.now();
|
|
const results = await processSessionsInParallel(sessionsWithMessages, maxConcurrency);
|
|
const endTime = Date.now();
|
|
|
|
const successCount = results.filter((r) => r.success).length;
|
|
const errorCount = results.filter((r) => !r.success).length;
|
|
|
|
process.stdout.write("[ProcessingScheduler] Session processing complete.\n");
|
|
process.stdout.write(`[ProcessingScheduler] Successfully processed: ${successCount} sessions.\n`);
|
|
process.stdout.write(`[ProcessingScheduler] Failed to process: ${errorCount} sessions.\n`);
|
|
process.stdout.write(`[ProcessingScheduler] Total processing time: ${((endTime - startTime) / 1000).toFixed(2)}s\n`);
|
|
}
|
|
|
|
/**
|
|
* Get total AI processing costs for reporting
|
|
*/
|
|
export async function getAIProcessingCosts(): Promise<{
|
|
totalCostEur: number;
|
|
totalTokens: number;
|
|
requestCount: number;
|
|
successfulRequests: number;
|
|
failedRequests: number;
|
|
}> {
|
|
const result = await prisma.aIProcessingRequest.aggregate({
|
|
_sum: {
|
|
totalCostEur: true,
|
|
totalTokens: true,
|
|
},
|
|
_count: {
|
|
id: true,
|
|
},
|
|
});
|
|
|
|
const successfulRequests = await prisma.aIProcessingRequest.count({
|
|
where: { success: true }
|
|
});
|
|
|
|
const failedRequests = await prisma.aIProcessingRequest.count({
|
|
where: { success: false }
|
|
});
|
|
|
|
return {
|
|
totalCostEur: result._sum.totalCostEur || 0,
|
|
totalTokens: result._sum.totalTokens || 0,
|
|
requestCount: result._count.id || 0,
|
|
successfulRequests,
|
|
failedRequests,
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Start the processing scheduler with configurable settings
|
|
*/
|
|
export function startProcessingScheduler(): void {
|
|
const config = getSchedulerConfig();
|
|
|
|
if (!config.enabled) {
|
|
console.log('[Processing Scheduler] Disabled via configuration');
|
|
return;
|
|
}
|
|
|
|
console.log(`[Processing Scheduler] Starting with interval: ${config.sessionProcessing.interval}`);
|
|
console.log(`[Processing Scheduler] Batch size: ${config.sessionProcessing.batchSize === 0 ? 'unlimited' : config.sessionProcessing.batchSize}`);
|
|
console.log(`[Processing Scheduler] Concurrency: ${config.sessionProcessing.concurrency}`);
|
|
|
|
cron.schedule(config.sessionProcessing.interval, async () => {
|
|
try {
|
|
await processUnprocessedSessions(
|
|
config.sessionProcessing.batchSize === 0 ? null : config.sessionProcessing.batchSize,
|
|
config.sessionProcessing.concurrency
|
|
);
|
|
} catch (error) {
|
|
process.stderr.write(`[ProcessingScheduler] Error in scheduler: ${error}\n`);
|
|
}
|
|
});
|
|
}
|