mirror of
https://github.com/kjanat/livedash-node.git
synced 2026-01-16 17:12:10 +01:00
feat: complete development environment setup and code quality improvements
- Set up pre-commit hooks with husky and lint-staged for automated code quality - Improved TypeScript type safety by replacing 'any' types with proper generics - Fixed markdown linting violations (MD030 spacing) across all documentation - Fixed compound adjective hyphenation in technical documentation - Fixed invalid JSON union syntax in API documentation examples - Automated code formatting and linting on commit - Enhanced error handling with better type constraints - Configured biome and markdownlint for consistent code style - All changes verified with successful production build
This commit is contained in:
@ -9,22 +9,25 @@ The Batch Monitoring Dashboard provides real-time visibility into the OpenAI Bat
|
||||
## Features
|
||||
|
||||
### Real-time Monitoring
|
||||
- **Job Status Tracking**: Monitor batch jobs from creation to completion
|
||||
- **Queue Management**: View pending, running, and completed batch queues
|
||||
- **Processing Metrics**: Track throughput, success rates, and error patterns
|
||||
- **Cost Analysis**: Monitor API costs and savings compared to individual requests
|
||||
|
||||
- **Job Status Tracking**: Monitor batch jobs from creation to completion
|
||||
- **Queue Management**: View pending, running, and completed batch queues
|
||||
- **Processing Metrics**: Track throughput, success rates, and error patterns
|
||||
- **Cost Analysis**: Monitor API costs and savings compared to individual requests
|
||||
|
||||
### Performance Analytics
|
||||
- **Batch Efficiency**: Analyze batch size optimization and processing times
|
||||
- **Success Rates**: Track completion and failure rates across different job types
|
||||
- **Resource Utilization**: Monitor API quota usage and rate limiting
|
||||
- **Historical Trends**: View processing patterns over time
|
||||
|
||||
- **Batch Efficiency**: Analyze batch size optimization and processing times
|
||||
- **Success Rates**: Track completion and failure rates across different job types
|
||||
- **Resource Utilization**: Monitor API quota usage and rate limiting
|
||||
- **Historical Trends**: View processing patterns over time
|
||||
|
||||
### Administrative Controls
|
||||
- **Manual Intervention**: Pause, resume, or cancel batch operations
|
||||
- **Priority Management**: Adjust processing priorities for urgent requests
|
||||
- **Error Handling**: Review and retry failed batch operations
|
||||
- **Configuration Management**: Adjust batch parameters and thresholds
|
||||
|
||||
- **Manual Intervention**: Pause, resume, or cancel batch operations
|
||||
- **Priority Management**: Adjust processing priorities for urgent requests
|
||||
- **Error Handling**: Review and retry failed batch operations
|
||||
- **Configuration Management**: Adjust batch parameters and thresholds
|
||||
|
||||
## API Endpoints
|
||||
|
||||
@ -132,6 +135,7 @@ const data = await response.json();
|
||||
The main dashboard component (`components/admin/BatchMonitoringDashboard.tsx`) provides:
|
||||
|
||||
#### Key Metrics Cards
|
||||
|
||||
```tsx
|
||||
// Real-time overview cards
|
||||
<MetricCard
|
||||
@ -157,6 +161,7 @@ The main dashboard component (`components/admin/BatchMonitoringDashboard.tsx`) p
|
||||
```
|
||||
|
||||
#### Queue Status Visualization
|
||||
|
||||
```tsx
|
||||
// Visual representation of batch job queues
|
||||
<QueueStatusChart
|
||||
@ -168,6 +173,7 @@ The main dashboard component (`components/admin/BatchMonitoringDashboard.tsx`) p
|
||||
```
|
||||
|
||||
#### Performance Charts
|
||||
|
||||
```tsx
|
||||
// Processing throughput over time
|
||||
<ThroughputChart
|
||||
@ -183,6 +189,7 @@ The main dashboard component (`components/admin/BatchMonitoringDashboard.tsx`) p
|
||||
```
|
||||
|
||||
#### Job Management Table
|
||||
|
||||
```tsx
|
||||
// Detailed job listing with actions
|
||||
<BatchJobTable
|
||||
@ -400,6 +407,7 @@ async function configureAlerts(alertConfig) {
|
||||
### Common Issues
|
||||
|
||||
#### High Error Rates
|
||||
|
||||
```javascript
|
||||
// Investigate high error rates
|
||||
async function investigateErrors() {
|
||||
@ -424,6 +432,7 @@ async function investigateErrors() {
|
||||
```
|
||||
|
||||
#### Slow Processing
|
||||
|
||||
```javascript
|
||||
// Analyze processing bottlenecks
|
||||
async function analyzePerformance() {
|
||||
@ -457,6 +466,7 @@ async function analyzePerformance() {
|
||||
### Performance Optimization
|
||||
|
||||
#### Batch Size Optimization
|
||||
|
||||
```javascript
|
||||
// Analyze optimal batch sizes
|
||||
async function optimizeBatchSizes() {
|
||||
@ -497,6 +507,7 @@ async function optimizeBatchSizes() {
|
||||
## Integration with Existing Systems
|
||||
|
||||
### Security Audit Integration
|
||||
|
||||
All batch monitoring activities are logged through the security audit system:
|
||||
|
||||
```javascript
|
||||
@ -510,6 +521,7 @@ await securityAuditLogger.logPlatformAdmin(
|
||||
```
|
||||
|
||||
### Rate Limiting Integration
|
||||
|
||||
Monitoring API endpoints use the existing rate limiting system:
|
||||
|
||||
```javascript
|
||||
@ -523,9 +535,9 @@ const rateLimitResult = await rateLimiter.check(
|
||||
|
||||
## Related Documentation
|
||||
|
||||
- [Batch Processing Optimizations](./batch-processing-optimizations.md)
|
||||
- [Security Monitoring](./security-monitoring.md)
|
||||
- [Admin Audit Logs API](./admin-audit-logs-api.md)
|
||||
- [OpenAI Batch API Integration](../lib/batchProcessor.ts)
|
||||
- [Batch Processing Optimizations](./batch-processing-optimizations.md)
|
||||
- [Security Monitoring](./security-monitoring.md)
|
||||
- [Admin Audit Logs API](./admin-audit-logs-api.md)
|
||||
- [OpenAI Batch API Integration](../lib/batchProcessor.ts)
|
||||
|
||||
The batch monitoring dashboard provides comprehensive visibility into the AI processing pipeline, enabling administrators to optimize performance, monitor costs, and ensure reliable operation of the batch processing system.
|
||||
The batch monitoring dashboard provides comprehensive visibility into the AI processing pipeline, enabling administrators to optimize performance, monitor costs, and ensure reliable operation of the batch processing system.
|
||||
|
||||
Reference in New Issue
Block a user