mirror of
https://github.com/kjanat/livedash-node.git
synced 2026-01-16 15:32:10 +01:00
docs: fix markdown formatting and improve git hook security
- Fix markdown list spacing (MD030) in performance, audit logs, and CSP docs - Remove ineffective while loop in commit-msg hook that caused subshell issues - Improve fetchWithRetry function with proper retry limits and exponential backoff - Update CSP metrics retention documentation for consistency
This commit is contained in:
@ -6,10 +6,10 @@ This document outlines the comprehensive database performance optimizations impl
|
||||
|
||||
The optimization focuses on the most frequently queried patterns in the application, particularly around:
|
||||
|
||||
- AI processing request tracking and batching
|
||||
- Session analytics and filtering
|
||||
- Security audit log analysis
|
||||
- Multi-tenant data isolation performance
|
||||
- AI processing request tracking and batching
|
||||
- Session analytics and filtering
|
||||
- Security audit log analysis
|
||||
- Multi-tenant data isolation performance
|
||||
|
||||
## Applied Optimizations
|
||||
|
||||
@ -31,9 +31,9 @@ INCLUDE ("processingStatus", "batchId", "requestedAt", "sessionId");
|
||||
|
||||
**Impact**:
|
||||
|
||||
- ~70% faster batch job queries
|
||||
- Reduced I/O for cost analysis reports
|
||||
- Improved scheduler performance
|
||||
- ~70% faster batch job queries
|
||||
- Reduced I/O for cost analysis reports
|
||||
- Improved scheduler performance
|
||||
|
||||
### 2. Session Analytics Optimizations
|
||||
|
||||
@ -54,9 +54,9 @@ INCLUDE ("startTime", "messagesSent");
|
||||
|
||||
**Impact**:
|
||||
|
||||
- ~85% faster dashboard load times
|
||||
- Efficient date range filtering
|
||||
- Optimized sentiment analysis queries
|
||||
- ~85% faster dashboard load times
|
||||
- Efficient date range filtering
|
||||
- Optimized sentiment analysis queries
|
||||
|
||||
### 3. Security Audit Log Optimizations
|
||||
|
||||
@ -77,9 +77,9 @@ INCLUDE ("eventType", "severity", "userId", "companyId");
|
||||
|
||||
**Impact**:
|
||||
|
||||
- ~90% faster security monitoring
|
||||
- Efficient threat detection
|
||||
- Improved compliance reporting
|
||||
- ~90% faster security monitoring
|
||||
- Efficient threat detection
|
||||
- Improved compliance reporting
|
||||
|
||||
### 4. Message Processing Optimizations
|
||||
|
||||
@ -95,8 +95,8 @@ INCLUDE ("content");
|
||||
|
||||
**Impact**:
|
||||
|
||||
- ~60% faster conversation loading
|
||||
- Reduced memory usage for message queries
|
||||
- ~60% faster conversation loading
|
||||
- Reduced memory usage for message queries
|
||||
|
||||
### 5. Processing Pipeline Optimizations
|
||||
|
||||
@ -118,29 +118,29 @@ INCLUDE ("sessionId", "errorMessage", "retryCount", "startedAt");
|
||||
|
||||
**Impact**:
|
||||
|
||||
- ~75% faster processing monitoring
|
||||
- Efficient error tracking
|
||||
- Improved retry logic performance
|
||||
- ~75% faster processing monitoring
|
||||
- Efficient error tracking
|
||||
- Improved retry logic performance
|
||||
|
||||
## Index Strategy Principles
|
||||
|
||||
### 1. Composite Index Design
|
||||
|
||||
- **Leading column**: Most selective filter (usually companyId for multi-tenancy)
|
||||
- **Secondary columns**: Common WHERE clause filters
|
||||
- **Covering columns**: SELECT list columns via INCLUDE
|
||||
- **Leading column**: Most selective filter (usually companyId for multi-tenancy)
|
||||
- **Secondary columns**: Common WHERE clause filters
|
||||
- **Covering columns**: SELECT list columns via INCLUDE
|
||||
|
||||
### 2. Partial Indexes
|
||||
|
||||
- Used for error analysis and specific status filtering
|
||||
- Reduces index size and maintenance overhead
|
||||
- Improves write performance
|
||||
- Used for error analysis and specific status filtering
|
||||
- Reduces index size and maintenance overhead
|
||||
- Improves write performance
|
||||
|
||||
### 3. Covering Indexes
|
||||
|
||||
- Include frequently accessed columns to avoid table lookups
|
||||
- Reduces I/O for read-heavy operations
|
||||
- Particularly effective for dashboard queries
|
||||
- Include frequently accessed columns to avoid table lookups
|
||||
- Reduces I/O for read-heavy operations
|
||||
- Particularly effective for dashboard queries
|
||||
|
||||
## Query Pattern Analysis
|
||||
|
||||
@ -166,29 +166,29 @@ INCLUDE ("sessionId", "errorMessage", "retryCount", "startedAt");
|
||||
|
||||
### Index Monitoring
|
||||
|
||||
- Monitor index usage with `pg_stat_user_indexes`
|
||||
- Track bloat with `pg_stat_user_tables`
|
||||
- Regular ANALYZE after bulk operations
|
||||
- Monitor index usage with `pg_stat_user_indexes`
|
||||
- Track bloat with `pg_stat_user_tables`
|
||||
- Regular ANALYZE after bulk operations
|
||||
|
||||
### Write Performance Impact
|
||||
|
||||
- Composite indexes add ~15% write overhead
|
||||
- Offset by dramatic read performance gains
|
||||
- Monitored via slow query logs
|
||||
- Composite indexes add ~15% write overhead
|
||||
- Offset by dramatic read performance gains
|
||||
- Monitored via slow query logs
|
||||
|
||||
### Storage Impact
|
||||
|
||||
- Indexes add ~25% to total storage
|
||||
- Covering indexes reduce need for table scans
|
||||
- Partial indexes minimize storage overhead
|
||||
- Indexes add ~25% to total storage
|
||||
- Covering indexes reduce need for table scans
|
||||
- Partial indexes minimize storage overhead
|
||||
|
||||
## Migration Safety
|
||||
|
||||
### CONCURRENTLY Operations
|
||||
|
||||
- All indexes created with `CREATE INDEX CONCURRENTLY`
|
||||
- No table locks during creation
|
||||
- Production-safe deployment
|
||||
- All indexes created with `CREATE INDEX CONCURRENTLY`
|
||||
- No table locks during creation
|
||||
- Production-safe deployment
|
||||
|
||||
### Rollback Strategy
|
||||
|
||||
@ -238,18 +238,18 @@ LIMIT 10;
|
||||
|
||||
### Monitoring Strategy
|
||||
|
||||
- Set up automated index usage monitoring
|
||||
- Track slow query evolution
|
||||
- Monitor storage growth patterns
|
||||
- Implement performance alerting
|
||||
- Set up automated index usage monitoring
|
||||
- Track slow query evolution
|
||||
- Monitor storage growth patterns
|
||||
- Implement performance alerting
|
||||
|
||||
## Conclusion
|
||||
|
||||
These database optimizations provide:
|
||||
|
||||
- **70-90% improvement** in query performance
|
||||
- **Reduced server load** through efficient indexing
|
||||
- **Better user experience** with faster dashboards
|
||||
- **Scalable foundation** for future growth
|
||||
- **70-90% improvement** in query performance
|
||||
- **Reduced server load** through efficient indexing
|
||||
- **Better user experience** with faster dashboards
|
||||
- **Scalable foundation** for future growth
|
||||
|
||||
The optimizations are designed to be production-safe and monitoring-friendly, ensuring both immediate performance gains and long-term maintainability.
|
||||
|
||||
Reference in New Issue
Block a user