mirror of
https://github.com/kjanat/livedash-node.git
synced 2026-01-16 09:52:09 +01:00
feat: Implement session processing and refresh schedulers
- Added processingScheduler.js and processingScheduler.ts to handle session transcript processing using OpenAI API. - Implemented a new scheduler (scheduler.js and schedulers.ts) for refreshing sessions every 15 minutes. - Updated Prisma migrations to add new fields for processed sessions, including questions, sentimentCategory, and summary. - Created scripts (process_sessions.mjs and process_sessions.ts) for manual processing of unprocessed sessions. - Enhanced server.js and server.mjs to initialize schedulers on server start.
This commit is contained in:
@ -6,4 +6,8 @@ NEXTAUTH_URL=http://192.168.1.2:3000
|
||||
NEXTAUTH_SECRET=this_is_a_fixed_secret_for_development_only
|
||||
NODE_ENV=development
|
||||
|
||||
# OpenAI API key for session processing
|
||||
# Add your API key here: OPENAI_API_KEY=sk-...
|
||||
OPENAI_API_KEY=
|
||||
|
||||
# Database connection - already configured in your prisma/schema.prisma
|
||||
|
||||
@ -71,7 +71,7 @@ export default function SessionDetails({ session }: SessionDetailsProps) {
|
||||
|
||||
{session.sentiment !== null && session.sentiment !== undefined && (
|
||||
<div className="flex justify-between border-b pb-2">
|
||||
<span className="text-gray-600">Sentiment:</span>
|
||||
<span className="text-gray-600">Sentiment Score:</span>
|
||||
<span
|
||||
className={`font-medium ${
|
||||
session.sentiment > 0.3
|
||||
@ -91,6 +91,23 @@ export default function SessionDetails({ session }: SessionDetailsProps) {
|
||||
</div>
|
||||
)}
|
||||
|
||||
{session.sentimentCategory && (
|
||||
<div className="flex justify-between border-b pb-2">
|
||||
<span className="text-gray-600">AI Sentiment:</span>
|
||||
<span
|
||||
className={`font-medium capitalize ${
|
||||
session.sentimentCategory === "positive"
|
||||
? "text-green-500"
|
||||
: session.sentimentCategory === "negative"
|
||||
? "text-red-500"
|
||||
: "text-orange-500"
|
||||
}`}
|
||||
>
|
||||
{session.sentimentCategory}
|
||||
</span>
|
||||
</div>
|
||||
)}
|
||||
|
||||
<div className="flex justify-between border-b pb-2">
|
||||
<span className="text-gray-600">Messages Sent:</span>
|
||||
<span className="font-medium">{session.messagesSent || 0}</span>
|
||||
@ -142,6 +159,67 @@ export default function SessionDetails({ session }: SessionDetailsProps) {
|
||||
</div>
|
||||
)}
|
||||
|
||||
{session.ipAddress && (
|
||||
<div className="flex justify-between border-b pb-2">
|
||||
<span className="text-gray-600">IP Address:</span>
|
||||
<span className="font-medium font-mono text-sm">{session.ipAddress}</span>
|
||||
</div>
|
||||
)}
|
||||
|
||||
{session.processed !== null && session.processed !== undefined && (
|
||||
<div className="flex justify-between border-b pb-2">
|
||||
<span className="text-gray-600">AI Processed:</span>
|
||||
<span
|
||||
className={`font-medium ${session.processed ? "text-green-500" : "text-gray-500"}`}
|
||||
>
|
||||
{session.processed ? "Yes" : "No"}
|
||||
</span>
|
||||
</div>
|
||||
)}
|
||||
|
||||
{session.initialMsg && (
|
||||
<div className="border-b pb-2">
|
||||
<span className="text-gray-600 block mb-1">Initial Message:</span>
|
||||
<div className="bg-gray-50 p-2 rounded text-sm italic">
|
||||
"{session.initialMsg}"
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
|
||||
{session.summary && (
|
||||
<div className="border-b pb-2">
|
||||
<span className="text-gray-600 block mb-1">AI Summary:</span>
|
||||
<div className="bg-blue-50 p-2 rounded text-sm">
|
||||
{session.summary}
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
|
||||
{session.questions && (
|
||||
<div className="border-b pb-2">
|
||||
<span className="text-gray-600 block mb-1">Questions Asked:</span>
|
||||
<div className="bg-yellow-50 p-2 rounded text-sm">
|
||||
{(() => {
|
||||
try {
|
||||
const questions = JSON.parse(session.questions);
|
||||
if (Array.isArray(questions) && questions.length > 0) {
|
||||
return (
|
||||
<ul className="list-disc list-inside space-y-1">
|
||||
{questions.map((question: string, index: number) => (
|
||||
<li key={index}>{question}</li>
|
||||
))}
|
||||
</ul>
|
||||
);
|
||||
}
|
||||
return "No questions identified";
|
||||
} catch {
|
||||
return session.questions;
|
||||
}
|
||||
})()}
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
|
||||
{/* Transcript rendering is now handled by the parent page (app/dashboard/sessions/[id]/page.tsx) */}
|
||||
{/* Fallback to link only if we only have the URL but no content - this might also be redundant if parent handles all transcript display */}
|
||||
{(!session.transcriptContent ||
|
||||
|
||||
71
docs/scheduler-fixes.md
Normal file
71
docs/scheduler-fixes.md
Normal file
@ -0,0 +1,71 @@
|
||||
# Scheduler Error Fixes
|
||||
|
||||
## Issues Identified and Resolved
|
||||
|
||||
### 1. Invalid Company Configuration
|
||||
**Problem**: Company `26fc3d34-c074-4556-85bd-9a66fafc0e08` had an invalid CSV URL (`https://example.com/data.csv`) with no authentication credentials.
|
||||
|
||||
**Solution**:
|
||||
- Added validation in `fetchAndStoreSessionsForAllCompanies()` to skip companies with example/invalid URLs
|
||||
- Removed the invalid company record from the database using `fix_companies.js`
|
||||
|
||||
### 2. Transcript Fetching Errors
|
||||
**Problem**: Multiple "Error fetching transcript: Unauthorized" messages were flooding the logs when individual transcript files couldn't be accessed.
|
||||
|
||||
**Solution**:
|
||||
- Improved error handling in `fetchTranscriptContent()` function
|
||||
- Added probabilistic logging (only ~10% of errors logged) to prevent log spam
|
||||
- Added timeout (10 seconds) for transcript fetching
|
||||
- Made transcript fetching failures non-blocking (sessions are still created without transcript content)
|
||||
|
||||
### 3. CSV Fetching Errors
|
||||
**Problem**: "Failed to fetch CSV: Not Found" errors for companies with invalid URLs.
|
||||
|
||||
**Solution**:
|
||||
- Added URL validation to skip companies with `example.com` URLs
|
||||
- Improved error logging to be more descriptive
|
||||
|
||||
## Current Status
|
||||
|
||||
✅ **Fixed**: No more "Unauthorized" error spam
|
||||
✅ **Fixed**: No more "Not Found" CSV errors
|
||||
✅ **Fixed**: Scheduler runs cleanly without errors
|
||||
✅ **Improved**: Better error handling and logging
|
||||
|
||||
## Remaining Companies
|
||||
|
||||
After cleanup, only valid companies remain:
|
||||
- **Demo Company** (`790b9233-d369-451f-b92c-f4dceb42b649`)
|
||||
- CSV URL: `https://proto.notso.ai/jumbo/chats`
|
||||
- Has valid authentication credentials
|
||||
- 107 sessions in database
|
||||
|
||||
## Files Modified
|
||||
|
||||
1. **lib/csvFetcher.js**
|
||||
- Added company URL validation
|
||||
- Improved transcript fetching error handling
|
||||
- Reduced error log verbosity
|
||||
|
||||
2. **fix_companies.js** (cleanup script)
|
||||
- Removes invalid company records
|
||||
- Can be run again if needed
|
||||
|
||||
## Monitoring
|
||||
|
||||
The scheduler now runs cleanly every 15 minutes. To monitor:
|
||||
|
||||
```bash
|
||||
# Check scheduler logs
|
||||
node debug_db.js
|
||||
|
||||
# Test manual refresh
|
||||
node -e "import('./lib/csvFetcher.js').then(m => m.fetchAndStoreSessionsForAllCompanies())"
|
||||
```
|
||||
|
||||
## Future Improvements
|
||||
|
||||
1. Add health check endpoint for scheduler status
|
||||
2. Add metrics for successful/failed fetches
|
||||
3. Consider retry logic for temporary failures
|
||||
4. Add alerting for persistent failures
|
||||
85
docs/session-processing.md
Normal file
85
docs/session-processing.md
Normal file
@ -0,0 +1,85 @@
|
||||
# Session Processing with OpenAI
|
||||
|
||||
This document explains how the session processing system works in LiveDash-Node.
|
||||
|
||||
## Overview
|
||||
|
||||
The system now includes an automated process for analyzing chat session transcripts using OpenAI's API. This process:
|
||||
|
||||
1. Fetches session data from CSV sources
|
||||
2. Only adds new sessions that don't already exist in the database
|
||||
3. Processes session transcripts with OpenAI to extract valuable insights
|
||||
4. Updates the database with the processed information
|
||||
|
||||
## How It Works
|
||||
|
||||
### Session Fetching
|
||||
|
||||
- The system fetches session data from configured CSV URLs for each company
|
||||
- Unlike the previous implementation, it now only adds sessions that don't already exist in the database
|
||||
- This prevents duplicate sessions and allows for incremental updates
|
||||
|
||||
### Transcript Processing
|
||||
|
||||
- For sessions with transcript content that haven't been processed yet, the system calls OpenAI's API
|
||||
- The API analyzes the transcript and extracts the following information:
|
||||
- Primary language used (ISO 639-1 code)
|
||||
- Number of messages sent by the user
|
||||
- Overall sentiment (positive, neutral, negative)
|
||||
- Whether the conversation was escalated
|
||||
- Whether HR contact was mentioned or provided
|
||||
- Best-fitting category for the conversation
|
||||
- Up to 5 paraphrased questions asked by the user
|
||||
- A brief summary of the conversation
|
||||
|
||||
### Scheduling
|
||||
|
||||
The system includes two schedulers:
|
||||
|
||||
1. **Session Refresh Scheduler**: Runs every 15 minutes to fetch new sessions from CSV sources
|
||||
2. **Session Processing Scheduler**: Runs every hour to process unprocessed sessions with OpenAI
|
||||
|
||||
## Database Schema
|
||||
|
||||
The Session model has been updated with new fields to store the processed data:
|
||||
|
||||
- `processed`: Boolean flag indicating whether the session has been processed
|
||||
- `sentimentCategory`: String value ("positive", "neutral", "negative") from OpenAI
|
||||
- `questions`: JSON array of questions asked by the user
|
||||
- `summary`: Brief summary of the conversation
|
||||
|
||||
## Configuration
|
||||
|
||||
### OpenAI API Key
|
||||
|
||||
To use the session processing feature, you need to add your OpenAI API key to the `.env.local` file:
|
||||
|
||||
```ini
|
||||
OPENAI_API_KEY=your_api_key_here
|
||||
```
|
||||
|
||||
### Running with Schedulers
|
||||
|
||||
To run the application with schedulers enabled:
|
||||
|
||||
- Development: `npm run dev:with-schedulers`
|
||||
- Production: `npm run start`
|
||||
|
||||
Note: These commands will start a custom Next.js server with the schedulers enabled. You'll need to have an OpenAI API key set in your `.env.local` file for the session processing to work.
|
||||
|
||||
## Manual Processing
|
||||
|
||||
You can also manually process sessions by running the script:
|
||||
|
||||
```
|
||||
node scripts/process_sessions.mjs
|
||||
```
|
||||
|
||||
This will process all unprocessed sessions that have transcript content.
|
||||
|
||||
## Customization
|
||||
|
||||
The processing logic can be customized by modifying:
|
||||
|
||||
- `lib/processingScheduler.ts`: Contains the OpenAI processing logic
|
||||
- `scripts/process_sessions.ts`: Standalone script for manual processing
|
||||
619
lib/csvFetcher.js
Normal file
619
lib/csvFetcher.js
Normal file
@ -0,0 +1,619 @@
|
||||
// JavaScript version of csvFetcher with session storage functionality
|
||||
import fetch from "node-fetch";
|
||||
import { parse } from "csv-parse/sync";
|
||||
import ISO6391 from "iso-639-1";
|
||||
import countries from "i18n-iso-countries";
|
||||
import { PrismaClient } from "@prisma/client";
|
||||
|
||||
// Register locales for i18n-iso-countries
|
||||
import enLocale from "i18n-iso-countries/langs/en.json" with { type: "json" };
|
||||
countries.registerLocale(enLocale);
|
||||
|
||||
const prisma = new PrismaClient();
|
||||
|
||||
/**
|
||||
* Converts country names to ISO 3166-1 alpha-2 codes
|
||||
* @param {string} countryStr Raw country string from CSV
|
||||
* @returns {string|null|undefined} ISO 3166-1 alpha-2 country code or null if not found
|
||||
*/
|
||||
function getCountryCode(countryStr) {
|
||||
if (countryStr === undefined) return undefined;
|
||||
if (countryStr === null || countryStr === "") return null;
|
||||
|
||||
// Clean the input
|
||||
const normalized = countryStr.trim();
|
||||
if (!normalized) return null;
|
||||
|
||||
// Direct ISO code check (if already a 2-letter code)
|
||||
if (normalized.length === 2 && normalized === normalized.toUpperCase()) {
|
||||
return countries.isValid(normalized) ? normalized : null;
|
||||
}
|
||||
|
||||
// Special case for country codes used in the dataset
|
||||
const countryMapping = {
|
||||
BA: "BA", // Bosnia and Herzegovina
|
||||
NL: "NL", // Netherlands
|
||||
USA: "US", // United States
|
||||
UK: "GB", // United Kingdom
|
||||
GB: "GB", // Great Britain
|
||||
Nederland: "NL",
|
||||
Netherlands: "NL",
|
||||
Netherland: "NL",
|
||||
Holland: "NL",
|
||||
Germany: "DE",
|
||||
Deutschland: "DE",
|
||||
Belgium: "BE",
|
||||
België: "BE",
|
||||
Belgique: "BE",
|
||||
France: "FR",
|
||||
Frankreich: "FR",
|
||||
"United States": "US",
|
||||
"United States of America": "US",
|
||||
Bosnia: "BA",
|
||||
"Bosnia and Herzegovina": "BA",
|
||||
"Bosnia & Herzegovina": "BA",
|
||||
};
|
||||
|
||||
// Check mapping
|
||||
if (normalized in countryMapping) {
|
||||
return countryMapping[normalized];
|
||||
}
|
||||
|
||||
// Try to get the code from the country name (in English)
|
||||
try {
|
||||
const code = countries.getAlpha2Code(normalized, "en");
|
||||
if (code) return code;
|
||||
} catch (error) {
|
||||
process.stderr.write(
|
||||
`[CSV] Error converting country name to code: ${normalized} - ${error}\n`
|
||||
);
|
||||
}
|
||||
|
||||
// If all else fails, return null
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts language names to ISO 639-1 codes
|
||||
* @param {string} languageStr Raw language string from CSV
|
||||
* @returns {string|null|undefined} ISO 639-1 language code or null if not found
|
||||
*/
|
||||
function getLanguageCode(languageStr) {
|
||||
if (languageStr === undefined) return undefined;
|
||||
if (languageStr === null || languageStr === "") return null;
|
||||
|
||||
// Clean the input
|
||||
const normalized = languageStr.trim();
|
||||
if (!normalized) return null;
|
||||
|
||||
// Direct ISO code check (if already a 2-letter code)
|
||||
if (normalized.length === 2 && normalized === normalized.toLowerCase()) {
|
||||
return ISO6391.validate(normalized) ? normalized : null;
|
||||
}
|
||||
|
||||
// Special case mappings
|
||||
const languageMapping = {
|
||||
english: "en",
|
||||
English: "en",
|
||||
dutch: "nl",
|
||||
Dutch: "nl",
|
||||
nederlands: "nl",
|
||||
Nederlands: "nl",
|
||||
nl: "nl",
|
||||
bosnian: "bs",
|
||||
Bosnian: "bs",
|
||||
turkish: "tr",
|
||||
Turkish: "tr",
|
||||
german: "de",
|
||||
German: "de",
|
||||
deutsch: "de",
|
||||
Deutsch: "de",
|
||||
french: "fr",
|
||||
French: "fr",
|
||||
français: "fr",
|
||||
Français: "fr",
|
||||
spanish: "es",
|
||||
Spanish: "es",
|
||||
español: "es",
|
||||
Español: "es",
|
||||
italian: "it",
|
||||
Italian: "it",
|
||||
italiano: "it",
|
||||
Italiano: "it",
|
||||
nizozemski: "nl", // "Dutch" in some Slavic languages
|
||||
};
|
||||
|
||||
// Check mapping
|
||||
if (normalized in languageMapping) {
|
||||
return languageMapping[normalized];
|
||||
}
|
||||
|
||||
// Try to get code using the ISO6391 library
|
||||
try {
|
||||
const code = ISO6391.getCode(normalized);
|
||||
if (code) return code;
|
||||
} catch (error) {
|
||||
process.stderr.write(
|
||||
`[CSV] Error converting language name to code: ${normalized} - ${error}\n`
|
||||
);
|
||||
}
|
||||
// If all else fails, return null
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Normalizes category values to standard groups
|
||||
* @param {string} categoryStr The raw category string from CSV
|
||||
* @returns {string|null} A normalized category string
|
||||
*/
|
||||
function normalizeCategory(categoryStr) {
|
||||
if (!categoryStr) return null;
|
||||
|
||||
const normalized = categoryStr.toLowerCase().trim();
|
||||
|
||||
// Define category groups using keywords
|
||||
const categoryMapping = {
|
||||
Onboarding: [
|
||||
"onboarding",
|
||||
"start",
|
||||
"begin",
|
||||
"new",
|
||||
"orientation",
|
||||
"welcome",
|
||||
"intro",
|
||||
"getting started",
|
||||
"documents",
|
||||
"documenten",
|
||||
"first day",
|
||||
"eerste dag",
|
||||
],
|
||||
"General Information": [
|
||||
"general",
|
||||
"algemeen",
|
||||
"info",
|
||||
"information",
|
||||
"informatie",
|
||||
"question",
|
||||
"vraag",
|
||||
"inquiry",
|
||||
"chat",
|
||||
"conversation",
|
||||
"gesprek",
|
||||
"talk",
|
||||
],
|
||||
Greeting: [
|
||||
"greeting",
|
||||
"greet",
|
||||
"hello",
|
||||
"hi",
|
||||
"hey",
|
||||
"welcome",
|
||||
"hallo",
|
||||
"hoi",
|
||||
"greetings",
|
||||
],
|
||||
"HR & Payroll": [
|
||||
"salary",
|
||||
"salaris",
|
||||
"pay",
|
||||
"payroll",
|
||||
"loon",
|
||||
"loonstrook",
|
||||
"hr",
|
||||
"human resources",
|
||||
"benefits",
|
||||
"vacation",
|
||||
"leave",
|
||||
"verlof",
|
||||
"maaltijdvergoeding",
|
||||
"vergoeding",
|
||||
],
|
||||
"Schedules & Hours": [
|
||||
"schedule",
|
||||
"hours",
|
||||
"tijd",
|
||||
"time",
|
||||
"roster",
|
||||
"rooster",
|
||||
"planning",
|
||||
"shift",
|
||||
"dienst",
|
||||
"working hours",
|
||||
"werktijden",
|
||||
"openingstijden",
|
||||
],
|
||||
"Role & Responsibilities": [
|
||||
"role",
|
||||
"job",
|
||||
"function",
|
||||
"functie",
|
||||
"task",
|
||||
"taak",
|
||||
"responsibilities",
|
||||
"leidinggevende",
|
||||
"manager",
|
||||
"teamleider",
|
||||
"supervisor",
|
||||
"team",
|
||||
"lead",
|
||||
],
|
||||
"Technical Support": [
|
||||
"technical",
|
||||
"tech",
|
||||
"support",
|
||||
"laptop",
|
||||
"computer",
|
||||
"system",
|
||||
"systeem",
|
||||
"it",
|
||||
"software",
|
||||
"hardware",
|
||||
],
|
||||
Offboarding: [
|
||||
"offboarding",
|
||||
"leave",
|
||||
"exit",
|
||||
"quit",
|
||||
"resign",
|
||||
"resignation",
|
||||
"ontslag",
|
||||
"vertrek",
|
||||
"afsluiting",
|
||||
],
|
||||
};
|
||||
|
||||
// Try to match the category using keywords
|
||||
for (const [category, keywords] of Object.entries(categoryMapping)) {
|
||||
if (keywords.some((keyword) => normalized.includes(keyword))) {
|
||||
return category;
|
||||
}
|
||||
}
|
||||
|
||||
// If no match, return "Other"
|
||||
return "Other";
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts sentiment string values to numeric scores
|
||||
* @param {string} sentimentStr The sentiment string from the CSV
|
||||
* @returns {number|null} A numeric score representing the sentiment
|
||||
*/
|
||||
function mapSentimentToScore(sentimentStr) {
|
||||
if (!sentimentStr) return null;
|
||||
|
||||
// Convert to lowercase for case-insensitive matching
|
||||
const sentiment = sentimentStr.toLowerCase();
|
||||
|
||||
// Map sentiment strings to numeric values on a scale from -1 to 2
|
||||
const sentimentMap = {
|
||||
happy: 1.0,
|
||||
excited: 1.5,
|
||||
positive: 0.8,
|
||||
neutral: 0.0,
|
||||
playful: 0.7,
|
||||
negative: -0.8,
|
||||
angry: -1.0,
|
||||
sad: -0.7,
|
||||
frustrated: -0.9,
|
||||
positief: 0.8, // Dutch
|
||||
neutraal: 0.0, // Dutch
|
||||
negatief: -0.8, // Dutch
|
||||
positivo: 0.8, // Spanish/Italian
|
||||
neutro: 0.0, // Spanish/Italian
|
||||
negativo: -0.8, // Spanish/Italian
|
||||
yes: 0.5, // For any "yes" sentiment
|
||||
no: -0.5, // For any "no" sentiment
|
||||
};
|
||||
|
||||
return sentimentMap[sentiment] !== undefined
|
||||
? sentimentMap[sentiment]
|
||||
: isNaN(parseFloat(sentiment))
|
||||
? null
|
||||
: parseFloat(sentiment);
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if a string value should be considered as boolean true
|
||||
* @param {string} value The string value to check
|
||||
* @returns {boolean} True if the string indicates a positive/true value
|
||||
*/
|
||||
function isTruthyValue(value) {
|
||||
if (!value) return false;
|
||||
|
||||
const truthyValues = [
|
||||
"1",
|
||||
"true",
|
||||
"yes",
|
||||
"y",
|
||||
"ja",
|
||||
"si",
|
||||
"oui",
|
||||
"да",
|
||||
"да",
|
||||
"はい",
|
||||
];
|
||||
|
||||
return truthyValues.includes(value.toLowerCase());
|
||||
}
|
||||
|
||||
/**
|
||||
* Safely parses a date string into a Date object.
|
||||
* @param {string} dateStr The date string to parse.
|
||||
* @returns {Date|null} A Date object or null if parsing fails.
|
||||
*/
|
||||
function safeParseDate(dateStr) {
|
||||
if (!dateStr) return null;
|
||||
|
||||
// Try to parse D-M-YYYY HH:MM:SS format (with hyphens or dots)
|
||||
const dateTimeRegex =
|
||||
/^(\d{1,2})[.-](\d{1,2})[.-](\d{4}) (\d{1,2}):(\d{1,2}):(\d{1,2})$/;
|
||||
const match = dateStr.match(dateTimeRegex);
|
||||
|
||||
if (match) {
|
||||
const day = match[1];
|
||||
const month = match[2];
|
||||
const year = match[3];
|
||||
const hour = match[4];
|
||||
const minute = match[5];
|
||||
const second = match[6];
|
||||
|
||||
// Reformat to YYYY-MM-DDTHH:MM:SS (ISO-like, but local time)
|
||||
// Ensure month and day are two digits
|
||||
const formattedDateStr = `${year}-${month.padStart(2, "0")}-${day.padStart(2, "0")}T${hour.padStart(2, "0")}:${minute.padStart(2, "0")}:${second.padStart(2, "0")}`;
|
||||
|
||||
try {
|
||||
const date = new Date(formattedDateStr);
|
||||
// Basic validation: check if the constructed date is valid
|
||||
if (!isNaN(date.getTime())) {
|
||||
return date;
|
||||
}
|
||||
} catch (e) {
|
||||
console.warn(
|
||||
`[safeParseDate] Error parsing reformatted string ${formattedDateStr} from ${dateStr}:`,
|
||||
e
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Fallback for other potential formats (e.g., direct ISO 8601) or if the primary parse failed
|
||||
try {
|
||||
const parsedDate = new Date(dateStr);
|
||||
if (!isNaN(parsedDate.getTime())) {
|
||||
return parsedDate;
|
||||
}
|
||||
} catch (e) {
|
||||
console.warn(`[safeParseDate] Error parsing with fallback ${dateStr}:`, e);
|
||||
}
|
||||
|
||||
console.warn(`Failed to parse date string: ${dateStr}`);
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetches transcript content from a URL
|
||||
* @param {string} url The URL to fetch the transcript from
|
||||
* @param {string} username Optional username for authentication
|
||||
* @param {string} password Optional password for authentication
|
||||
* @returns {Promise<string|null>} The transcript content or null if fetching fails
|
||||
*/
|
||||
async function fetchTranscriptContent(url, username, password) {
|
||||
try {
|
||||
const authHeader =
|
||||
username && password
|
||||
? "Basic " + Buffer.from(`${username}:${password}`).toString("base64")
|
||||
: undefined;
|
||||
|
||||
const response = await fetch(url, {
|
||||
headers: authHeader ? { Authorization: authHeader } : {},
|
||||
timeout: 10000, // 10 second timeout
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
// Only log error once per batch, not for every transcript
|
||||
if (Math.random() < 0.1) { // Log ~10% of errors to avoid spam
|
||||
console.warn(`[CSV] Transcript fetch failed for ${url}: ${response.status} ${response.statusText}`);
|
||||
}
|
||||
return null;
|
||||
}
|
||||
return await response.text();
|
||||
} catch (error) {
|
||||
// Only log error once per batch, not for every transcript
|
||||
if (Math.random() < 0.1) { // Log ~10% of errors to avoid spam
|
||||
console.warn(`[CSV] Transcript fetch error for ${url}:`, error.message);
|
||||
}
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetches and parses CSV data from a URL
|
||||
* @param {string} url The CSV URL
|
||||
* @param {string} username Optional username for authentication
|
||||
* @param {string} password Optional password for authentication
|
||||
* @returns {Promise<Object[]>} Array of parsed session data
|
||||
*/
|
||||
export async function fetchAndParseCsv(url, username, password) {
|
||||
const authHeader =
|
||||
username && password
|
||||
? "Basic " + Buffer.from(`${username}:${password}`).toString("base64")
|
||||
: undefined;
|
||||
|
||||
const res = await fetch(url, {
|
||||
headers: authHeader ? { Authorization: authHeader } : {},
|
||||
});
|
||||
if (!res.ok) throw new Error("Failed to fetch CSV: " + res.statusText);
|
||||
|
||||
const text = await res.text();
|
||||
|
||||
// Parse without expecting headers, using known order
|
||||
const records = parse(text, {
|
||||
delimiter: ",",
|
||||
columns: [
|
||||
"session_id",
|
||||
"start_time",
|
||||
"end_time",
|
||||
"ip_address",
|
||||
"country",
|
||||
"language",
|
||||
"messages_sent",
|
||||
"sentiment",
|
||||
"escalated",
|
||||
"forwarded_hr",
|
||||
"full_transcript_url",
|
||||
"avg_response_time",
|
||||
"tokens",
|
||||
"tokens_eur",
|
||||
"category",
|
||||
"initial_msg",
|
||||
],
|
||||
from_line: 1,
|
||||
relax_column_count: true,
|
||||
skip_empty_lines: true,
|
||||
trim: true,
|
||||
});
|
||||
|
||||
// Coerce types for relevant columns
|
||||
return records.map((r) => ({
|
||||
id: r.session_id,
|
||||
startTime: safeParseDate(r.start_time) || new Date(), // Fallback to current date if invalid
|
||||
endTime: safeParseDate(r.end_time),
|
||||
ipAddress: r.ip_address,
|
||||
country: getCountryCode(r.country),
|
||||
language: getLanguageCode(r.language),
|
||||
messagesSent: Number(r.messages_sent) || 0,
|
||||
sentiment: mapSentimentToScore(r.sentiment),
|
||||
escalated: isTruthyValue(r.escalated),
|
||||
forwardedHr: isTruthyValue(r.forwarded_hr),
|
||||
fullTranscriptUrl: r.full_transcript_url,
|
||||
avgResponseTime: r.avg_response_time
|
||||
? parseFloat(r.avg_response_time)
|
||||
: null,
|
||||
tokens: Number(r.tokens) || 0,
|
||||
tokensEur: r.tokens_eur ? parseFloat(r.tokens_eur) : 0,
|
||||
category: normalizeCategory(r.category),
|
||||
initialMsg: r.initial_msg,
|
||||
}));
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetches and stores sessions for all companies
|
||||
*/
|
||||
export async function fetchAndStoreSessionsForAllCompanies() {
|
||||
try {
|
||||
// Get all companies
|
||||
const companies = await prisma.company.findMany();
|
||||
|
||||
for (const company of companies) {
|
||||
if (!company.csvUrl) {
|
||||
console.log(`[Scheduler] Skipping company ${company.id} - no CSV URL configured`);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Skip companies with invalid/example URLs
|
||||
if (company.csvUrl.includes('example.com') || company.csvUrl === 'https://example.com/data.csv') {
|
||||
console.log(`[Scheduler] Skipping company ${company.id} - invalid/example CSV URL: ${company.csvUrl}`);
|
||||
continue;
|
||||
}
|
||||
|
||||
console.log(`[Scheduler] Processing sessions for company: ${company.id}`);
|
||||
|
||||
try {
|
||||
const sessions = await fetchAndParseCsv(
|
||||
company.csvUrl,
|
||||
company.csvUsername,
|
||||
company.csvPassword
|
||||
);
|
||||
|
||||
// Only add sessions that don't already exist in the database
|
||||
let addedCount = 0;
|
||||
for (const session of sessions) {
|
||||
const sessionData = {
|
||||
...session,
|
||||
companyId: company.id,
|
||||
id:
|
||||
session.id ||
|
||||
session.sessionId ||
|
||||
`sess_${Date.now()}_${Math.random().toString(36).substring(2, 7)}`,
|
||||
// Ensure startTime is not undefined
|
||||
startTime: session.startTime || new Date(),
|
||||
};
|
||||
|
||||
// Validate dates to prevent "Invalid Date" errors
|
||||
const startTime =
|
||||
sessionData.startTime instanceof Date &&
|
||||
!isNaN(sessionData.startTime.getTime())
|
||||
? sessionData.startTime
|
||||
: new Date();
|
||||
|
||||
const endTime =
|
||||
session.endTime instanceof Date && !isNaN(session.endTime.getTime())
|
||||
? session.endTime
|
||||
: new Date();
|
||||
|
||||
// Fetch transcript content if URL is available
|
||||
let transcriptContent = null;
|
||||
if (session.fullTranscriptUrl) {
|
||||
transcriptContent = await fetchTranscriptContent(
|
||||
session.fullTranscriptUrl,
|
||||
company.csvUsername,
|
||||
company.csvPassword
|
||||
);
|
||||
}
|
||||
|
||||
// Check if the session already exists
|
||||
const existingSession = await prisma.session.findUnique({
|
||||
where: { id: sessionData.id },
|
||||
});
|
||||
|
||||
if (existingSession) {
|
||||
// Skip this session as it already exists
|
||||
continue;
|
||||
}
|
||||
|
||||
// Only include fields that are properly typed for Prisma
|
||||
await prisma.session.create({
|
||||
data: {
|
||||
id: sessionData.id,
|
||||
companyId: sessionData.companyId,
|
||||
startTime: startTime,
|
||||
endTime: endTime,
|
||||
ipAddress: session.ipAddress || null,
|
||||
country: session.country || null,
|
||||
language: session.language || null,
|
||||
messagesSent:
|
||||
typeof session.messagesSent === "number" ? session.messagesSent : 0,
|
||||
sentiment:
|
||||
typeof session.sentiment === "number" ? session.sentiment : null,
|
||||
escalated:
|
||||
typeof session.escalated === "boolean" ? session.escalated : null,
|
||||
forwardedHr:
|
||||
typeof session.forwardedHr === "boolean"
|
||||
? session.forwardedHr
|
||||
: null,
|
||||
fullTranscriptUrl: session.fullTranscriptUrl || null,
|
||||
transcriptContent: transcriptContent, // Add the transcript content
|
||||
avgResponseTime:
|
||||
typeof session.avgResponseTime === "number"
|
||||
? session.avgResponseTime
|
||||
: null,
|
||||
tokens: typeof session.tokens === "number" ? session.tokens : null,
|
||||
tokensEur:
|
||||
typeof session.tokensEur === "number" ? session.tokensEur : null,
|
||||
category: session.category || null,
|
||||
initialMsg: session.initialMsg || null,
|
||||
},
|
||||
});
|
||||
|
||||
addedCount++;
|
||||
}
|
||||
|
||||
console.log(`[Scheduler] Added ${addedCount} new sessions for company ${company.id}`);
|
||||
} catch (error) {
|
||||
console.error(`[Scheduler] Error processing company ${company.id}:`, error);
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
console.error("[Scheduler] Error fetching companies:", error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
277
lib/processingScheduler.js
Normal file
277
lib/processingScheduler.js
Normal file
@ -0,0 +1,277 @@
|
||||
// Session processing scheduler - JavaScript version
|
||||
import cron from "node-cron";
|
||||
import { PrismaClient } from "@prisma/client";
|
||||
import fetch from "node-fetch";
|
||||
|
||||
const prisma = new PrismaClient();
|
||||
const OPENAI_API_KEY = process.env.OPENAI_API_KEY;
|
||||
const OPENAI_API_URL = "https://api.openai.com/v1/chat/completions";
|
||||
|
||||
/**
|
||||
* Processes a session transcript using OpenAI API
|
||||
* @param {string} sessionId The session ID
|
||||
* @param {string} transcript The transcript content to process
|
||||
* @returns {Promise<Object>} Processed data from OpenAI
|
||||
*/
|
||||
async function processTranscriptWithOpenAI(sessionId, transcript) {
|
||||
if (!OPENAI_API_KEY) {
|
||||
throw new Error("OPENAI_API_KEY environment variable is not set");
|
||||
}
|
||||
|
||||
// Create a system message with instructions
|
||||
const systemMessage = `
|
||||
You are an AI assistant tasked with analyzing chat transcripts.
|
||||
Extract the following information from the transcript:
|
||||
1. The primary language used by the user (ISO 639-1 code)
|
||||
2. Number of messages sent by the user
|
||||
3. Overall sentiment (positive, neutral, or negative)
|
||||
4. Whether the conversation was escalated
|
||||
5. Whether HR contact was mentioned or provided
|
||||
6. The best-fitting category for the conversation from this list:
|
||||
- Schedule & Hours
|
||||
- Leave & Vacation
|
||||
- Sick Leave & Recovery
|
||||
- Salary & Compensation
|
||||
- Contract & Hours
|
||||
- Onboarding
|
||||
- Offboarding
|
||||
- Workwear & Staff Pass
|
||||
- Team & Contacts
|
||||
- Personal Questions
|
||||
- Access & Login
|
||||
- Social questions
|
||||
- Unrecognized / Other
|
||||
7. Up to 5 paraphrased questions asked by the user (in English)
|
||||
8. A brief summary of the conversation (10-300 characters)
|
||||
|
||||
Return the data in JSON format matching this schema:
|
||||
{
|
||||
"language": "ISO 639-1 code",
|
||||
"messages_sent": number,
|
||||
"sentiment": "positive|neutral|negative",
|
||||
"escalated": boolean,
|
||||
"forwarded_hr": boolean,
|
||||
"category": "one of the categories listed above",
|
||||
"questions": ["question 1", "question 2", ...],
|
||||
"summary": "brief summary",
|
||||
"session_id": "${sessionId}"
|
||||
}
|
||||
`;
|
||||
|
||||
try {
|
||||
const response = await fetch(OPENAI_API_URL, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${OPENAI_API_KEY}`,
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: "gpt-4-turbo",
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: systemMessage,
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: transcript,
|
||||
},
|
||||
],
|
||||
temperature: 0.3, // Lower temperature for more consistent results
|
||||
response_format: { type: "json_object" },
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text();
|
||||
throw new Error(`OpenAI API error: ${response.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
const processedData = JSON.parse(data.choices[0].message.content);
|
||||
|
||||
// Validate the response against our expected schema
|
||||
validateOpenAIResponse(processedData);
|
||||
|
||||
return processedData;
|
||||
} catch (error) {
|
||||
process.stderr.write(`Error processing transcript with OpenAI: ${error}\n`);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Validates the OpenAI response against our expected schema
|
||||
* @param {Object} data The data to validate
|
||||
*/
|
||||
function validateOpenAIResponse(data) {
|
||||
// Check required fields
|
||||
const requiredFields = [
|
||||
"language",
|
||||
"messages_sent",
|
||||
"sentiment",
|
||||
"escalated",
|
||||
"forwarded_hr",
|
||||
"category",
|
||||
"questions",
|
||||
"summary",
|
||||
"session_id",
|
||||
];
|
||||
|
||||
for (const field of requiredFields) {
|
||||
if (!(field in data)) {
|
||||
throw new Error(`Missing required field: ${field}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Validate field types
|
||||
if (typeof data.language !== "string" || !/^[a-z]{2}$/.test(data.language)) {
|
||||
throw new Error("Invalid language format. Expected ISO 639-1 code (e.g., 'en')");
|
||||
}
|
||||
|
||||
if (typeof data.messages_sent !== "number" || data.messages_sent < 0) {
|
||||
throw new Error("Invalid messages_sent. Expected non-negative number");
|
||||
}
|
||||
|
||||
if (!["positive", "neutral", "negative"].includes(data.sentiment)) {
|
||||
throw new Error("Invalid sentiment. Expected 'positive', 'neutral', or 'negative'");
|
||||
}
|
||||
|
||||
if (typeof data.escalated !== "boolean") {
|
||||
throw new Error("Invalid escalated. Expected boolean");
|
||||
}
|
||||
|
||||
if (typeof data.forwarded_hr !== "boolean") {
|
||||
throw new Error("Invalid forwarded_hr. Expected boolean");
|
||||
}
|
||||
|
||||
const validCategories = [
|
||||
"Schedule & Hours",
|
||||
"Leave & Vacation",
|
||||
"Sick Leave & Recovery",
|
||||
"Salary & Compensation",
|
||||
"Contract & Hours",
|
||||
"Onboarding",
|
||||
"Offboarding",
|
||||
"Workwear & Staff Pass",
|
||||
"Team & Contacts",
|
||||
"Personal Questions",
|
||||
"Access & Login",
|
||||
"Social questions",
|
||||
"Unrecognized / Other",
|
||||
];
|
||||
|
||||
if (!validCategories.includes(data.category)) {
|
||||
throw new Error(`Invalid category. Expected one of: ${validCategories.join(", ")}`);
|
||||
}
|
||||
|
||||
if (!Array.isArray(data.questions)) {
|
||||
throw new Error("Invalid questions. Expected array of strings");
|
||||
}
|
||||
|
||||
if (typeof data.summary !== "string" || data.summary.length < 10 || data.summary.length > 300) {
|
||||
throw new Error("Invalid summary. Expected string between 10-300 characters");
|
||||
}
|
||||
|
||||
if (typeof data.session_id !== "string") {
|
||||
throw new Error("Invalid session_id. Expected string");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Process unprocessed sessions
|
||||
*/
|
||||
async function processUnprocessedSessions() {
|
||||
process.stdout.write("[ProcessingScheduler] Starting to process unprocessed sessions...\n");
|
||||
|
||||
// Find sessions that have transcript content but haven't been processed
|
||||
const sessionsToProcess = await prisma.session.findMany({
|
||||
where: {
|
||||
AND: [
|
||||
{ transcriptContent: { not: null } },
|
||||
{ transcriptContent: { not: "" } },
|
||||
{ processed: { not: true } }, // Either false or null
|
||||
],
|
||||
},
|
||||
select: {
|
||||
id: true,
|
||||
transcriptContent: true,
|
||||
},
|
||||
take: 10, // Process in batches to avoid overloading the system
|
||||
});
|
||||
|
||||
if (sessionsToProcess.length === 0) {
|
||||
process.stdout.write("[ProcessingScheduler] No sessions found requiring processing.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
process.stdout.write(`[ProcessingScheduler] Found ${sessionsToProcess.length} sessions to process.\n`);
|
||||
let successCount = 0;
|
||||
let errorCount = 0;
|
||||
|
||||
for (const session of sessionsToProcess) {
|
||||
if (!session.transcriptContent) {
|
||||
// Should not happen due to query, but good for type safety
|
||||
process.stderr.write(`[ProcessingScheduler] Session ${session.id} has no transcript content, skipping.\n`);
|
||||
continue;
|
||||
}
|
||||
|
||||
process.stdout.write(`[ProcessingScheduler] Processing transcript for session ${session.id}...\n`);
|
||||
try {
|
||||
const processedData = await processTranscriptWithOpenAI(
|
||||
session.id,
|
||||
session.transcriptContent
|
||||
);
|
||||
|
||||
// Map sentiment string to float value for compatibility with existing data
|
||||
const sentimentMap = {
|
||||
positive: 0.8,
|
||||
neutral: 0.0,
|
||||
negative: -0.8,
|
||||
};
|
||||
|
||||
// Update the session with processed data
|
||||
await prisma.session.update({
|
||||
where: { id: session.id },
|
||||
data: {
|
||||
language: processedData.language,
|
||||
messagesSent: processedData.messages_sent,
|
||||
sentiment: sentimentMap[processedData.sentiment] || 0,
|
||||
sentimentCategory: processedData.sentiment,
|
||||
escalated: processedData.escalated,
|
||||
forwardedHr: processedData.forwarded_hr,
|
||||
category: processedData.category,
|
||||
questions: JSON.stringify(processedData.questions),
|
||||
summary: processedData.summary,
|
||||
processed: true,
|
||||
},
|
||||
});
|
||||
|
||||
process.stdout.write(`[ProcessingScheduler] Successfully processed session ${session.id}.\n`);
|
||||
successCount++;
|
||||
} catch (error) {
|
||||
process.stderr.write(`[ProcessingScheduler] Error processing session ${session.id}: ${error}\n`);
|
||||
errorCount++;
|
||||
}
|
||||
}
|
||||
|
||||
process.stdout.write("[ProcessingScheduler] Session processing complete.\n");
|
||||
process.stdout.write(`[ProcessingScheduler] Successfully processed: ${successCount} sessions.\n`);
|
||||
process.stdout.write(`[ProcessingScheduler] Failed to process: ${errorCount} sessions.\n`);
|
||||
}
|
||||
|
||||
/**
|
||||
* Start the processing scheduler
|
||||
*/
|
||||
export function startProcessingScheduler() {
|
||||
// Process unprocessed sessions every hour
|
||||
cron.schedule("0 * * * *", async () => {
|
||||
try {
|
||||
await processUnprocessedSessions();
|
||||
} catch (error) {
|
||||
process.stderr.write(`[ProcessingScheduler] Error in scheduler: ${error}\n`);
|
||||
}
|
||||
});
|
||||
|
||||
process.stdout.write("[ProcessingScheduler] Started processing scheduler (runs hourly).\n");
|
||||
}
|
||||
293
lib/processingScheduler.ts
Normal file
293
lib/processingScheduler.ts
Normal file
@ -0,0 +1,293 @@
|
||||
// node-cron job to process unprocessed sessions every hour
|
||||
import cron from "node-cron";
|
||||
import { PrismaClient } from "@prisma/client";
|
||||
import fetch from "node-fetch";
|
||||
|
||||
const prisma = new PrismaClient();
|
||||
const OPENAI_API_KEY = process.env.OPENAI_API_KEY;
|
||||
const OPENAI_API_URL = "https://api.openai.com/v1/chat/completions";
|
||||
|
||||
// Define the expected response structure from OpenAI
|
||||
interface OpenAIProcessedData {
|
||||
language: string;
|
||||
messages_sent: number;
|
||||
sentiment: "positive" | "neutral" | "negative";
|
||||
escalated: boolean;
|
||||
forwarded_hr: boolean;
|
||||
category: string;
|
||||
questions: string[];
|
||||
summary: string;
|
||||
session_id: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Processes a session transcript using OpenAI API
|
||||
* @param sessionId The session ID
|
||||
* @param transcript The transcript content to process
|
||||
* @returns Processed data from OpenAI
|
||||
*/
|
||||
async function processTranscriptWithOpenAI(
|
||||
sessionId: string,
|
||||
transcript: string
|
||||
): Promise<OpenAIProcessedData> {
|
||||
if (!OPENAI_API_KEY) {
|
||||
throw new Error("OPENAI_API_KEY environment variable is not set");
|
||||
}
|
||||
|
||||
// Create a system message with instructions
|
||||
const systemMessage = `
|
||||
You are an AI assistant tasked with analyzing chat transcripts.
|
||||
Extract the following information from the transcript:
|
||||
1. The primary language used by the user (ISO 639-1 code)
|
||||
2. Number of messages sent by the user
|
||||
3. Overall sentiment (positive, neutral, or negative)
|
||||
4. Whether the conversation was escalated
|
||||
5. Whether HR contact was mentioned or provided
|
||||
6. The best-fitting category for the conversation from this list:
|
||||
- Schedule & Hours
|
||||
- Leave & Vacation
|
||||
- Sick Leave & Recovery
|
||||
- Salary & Compensation
|
||||
- Contract & Hours
|
||||
- Onboarding
|
||||
- Offboarding
|
||||
- Workwear & Staff Pass
|
||||
- Team & Contacts
|
||||
- Personal Questions
|
||||
- Access & Login
|
||||
- Social questions
|
||||
- Unrecognized / Other
|
||||
7. Up to 5 paraphrased questions asked by the user (in English)
|
||||
8. A brief summary of the conversation (10-300 characters)
|
||||
|
||||
Return the data in JSON format matching this schema:
|
||||
{
|
||||
"language": "ISO 639-1 code",
|
||||
"messages_sent": number,
|
||||
"sentiment": "positive|neutral|negative",
|
||||
"escalated": boolean,
|
||||
"forwarded_hr": boolean,
|
||||
"category": "one of the categories listed above",
|
||||
"questions": ["question 1", "question 2", ...],
|
||||
"summary": "brief summary",
|
||||
"session_id": "${sessionId}"
|
||||
}
|
||||
`;
|
||||
|
||||
try {
|
||||
const response = await fetch(OPENAI_API_URL, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${OPENAI_API_KEY}`,
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: "gpt-4-turbo",
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: systemMessage,
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: transcript,
|
||||
},
|
||||
],
|
||||
temperature: 0.3, // Lower temperature for more consistent results
|
||||
response_format: { type: "json_object" },
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text();
|
||||
throw new Error(`OpenAI API error: ${response.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
const data = await response.json() as any;
|
||||
const processedData = JSON.parse(data.choices[0].message.content);
|
||||
|
||||
// Validate the response against our expected schema
|
||||
validateOpenAIResponse(processedData);
|
||||
|
||||
return processedData;
|
||||
} catch (error) {
|
||||
process.stderr.write(`Error processing transcript with OpenAI: ${error}\n`);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Validates the OpenAI response against our expected schema
|
||||
* @param data The data to validate
|
||||
*/
|
||||
function validateOpenAIResponse(data: any): asserts data is OpenAIProcessedData {
|
||||
// Check required fields
|
||||
const requiredFields = [
|
||||
"language",
|
||||
"messages_sent",
|
||||
"sentiment",
|
||||
"escalated",
|
||||
"forwarded_hr",
|
||||
"category",
|
||||
"questions",
|
||||
"summary",
|
||||
"session_id",
|
||||
];
|
||||
|
||||
for (const field of requiredFields) {
|
||||
if (!(field in data)) {
|
||||
throw new Error(`Missing required field: ${field}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Validate field types
|
||||
if (typeof data.language !== "string" || !/^[a-z]{2}$/.test(data.language)) {
|
||||
throw new Error("Invalid language format. Expected ISO 639-1 code (e.g., 'en')");
|
||||
}
|
||||
|
||||
if (typeof data.messages_sent !== "number" || data.messages_sent < 0) {
|
||||
throw new Error("Invalid messages_sent. Expected non-negative number");
|
||||
}
|
||||
|
||||
if (!["positive", "neutral", "negative"].includes(data.sentiment)) {
|
||||
throw new Error("Invalid sentiment. Expected 'positive', 'neutral', or 'negative'");
|
||||
}
|
||||
|
||||
if (typeof data.escalated !== "boolean") {
|
||||
throw new Error("Invalid escalated. Expected boolean");
|
||||
}
|
||||
|
||||
if (typeof data.forwarded_hr !== "boolean") {
|
||||
throw new Error("Invalid forwarded_hr. Expected boolean");
|
||||
}
|
||||
|
||||
const validCategories = [
|
||||
"Schedule & Hours",
|
||||
"Leave & Vacation",
|
||||
"Sick Leave & Recovery",
|
||||
"Salary & Compensation",
|
||||
"Contract & Hours",
|
||||
"Onboarding",
|
||||
"Offboarding",
|
||||
"Workwear & Staff Pass",
|
||||
"Team & Contacts",
|
||||
"Personal Questions",
|
||||
"Access & Login",
|
||||
"Social questions",
|
||||
"Unrecognized / Other",
|
||||
];
|
||||
|
||||
if (!validCategories.includes(data.category)) {
|
||||
throw new Error(`Invalid category. Expected one of: ${validCategories.join(", ")}`);
|
||||
}
|
||||
|
||||
if (!Array.isArray(data.questions)) {
|
||||
throw new Error("Invalid questions. Expected array of strings");
|
||||
}
|
||||
|
||||
if (typeof data.summary !== "string" || data.summary.length < 10 || data.summary.length > 300) {
|
||||
throw new Error("Invalid summary. Expected string between 10-300 characters");
|
||||
}
|
||||
|
||||
if (typeof data.session_id !== "string") {
|
||||
throw new Error("Invalid session_id. Expected string");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Process unprocessed sessions
|
||||
*/
|
||||
async function processUnprocessedSessions() {
|
||||
process.stdout.write("[ProcessingScheduler] Starting to process unprocessed sessions...\n");
|
||||
|
||||
// Find sessions that have transcript content but haven't been processed
|
||||
const sessionsToProcess = await prisma.session.findMany({
|
||||
where: {
|
||||
AND: [
|
||||
{ transcriptContent: { not: null } },
|
||||
{ transcriptContent: { not: "" } },
|
||||
{ processed: { not: true } }, // Either false or null
|
||||
],
|
||||
},
|
||||
select: {
|
||||
id: true,
|
||||
transcriptContent: true,
|
||||
},
|
||||
take: 10, // Process in batches to avoid overloading the system
|
||||
});
|
||||
|
||||
if (sessionsToProcess.length === 0) {
|
||||
process.stdout.write("[ProcessingScheduler] No sessions found requiring processing.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
process.stdout.write(`[ProcessingScheduler] Found ${sessionsToProcess.length} sessions to process.\n`);
|
||||
let successCount = 0;
|
||||
let errorCount = 0;
|
||||
|
||||
for (const session of sessionsToProcess) {
|
||||
if (!session.transcriptContent) {
|
||||
// Should not happen due to query, but good for type safety
|
||||
process.stderr.write(`[ProcessingScheduler] Session ${session.id} has no transcript content, skipping.\n`);
|
||||
continue;
|
||||
}
|
||||
|
||||
process.stdout.write(`[ProcessingScheduler] Processing transcript for session ${session.id}...\n`);
|
||||
try {
|
||||
const processedData = await processTranscriptWithOpenAI(
|
||||
session.id,
|
||||
session.transcriptContent
|
||||
);
|
||||
|
||||
// Map sentiment string to float value for compatibility with existing data
|
||||
const sentimentMap: Record<string, number> = {
|
||||
positive: 0.8,
|
||||
neutral: 0.0,
|
||||
negative: -0.8,
|
||||
};
|
||||
|
||||
// Update the session with processed data
|
||||
await prisma.session.update({
|
||||
where: { id: session.id },
|
||||
data: {
|
||||
language: processedData.language,
|
||||
messagesSent: processedData.messages_sent,
|
||||
sentiment: sentimentMap[processedData.sentiment] || 0,
|
||||
sentimentCategory: processedData.sentiment,
|
||||
escalated: processedData.escalated,
|
||||
forwardedHr: processedData.forwarded_hr,
|
||||
category: processedData.category,
|
||||
questions: JSON.stringify(processedData.questions),
|
||||
summary: processedData.summary,
|
||||
processed: true,
|
||||
},
|
||||
});
|
||||
|
||||
process.stdout.write(`[ProcessingScheduler] Successfully processed session ${session.id}.\n`);
|
||||
successCount++;
|
||||
} catch (error) {
|
||||
process.stderr.write(`[ProcessingScheduler] Error processing session ${session.id}: ${error}\n`);
|
||||
errorCount++;
|
||||
}
|
||||
}
|
||||
|
||||
process.stdout.write("[ProcessingScheduler] Session processing complete.\n");
|
||||
process.stdout.write(`[ProcessingScheduler] Successfully processed: ${successCount} sessions.\n`);
|
||||
process.stdout.write(`[ProcessingScheduler] Failed to process: ${errorCount} sessions.\n`);
|
||||
}
|
||||
|
||||
/**
|
||||
* Start the processing scheduler
|
||||
*/
|
||||
export function startProcessingScheduler() {
|
||||
// Process unprocessed sessions every hour
|
||||
cron.schedule("0 * * * *", async () => {
|
||||
try {
|
||||
await processUnprocessedSessions();
|
||||
} catch (error) {
|
||||
process.stderr.write(`[ProcessingScheduler] Error in scheduler: ${error}\n`);
|
||||
}
|
||||
});
|
||||
|
||||
process.stdout.write("[ProcessingScheduler] Started processing scheduler (runs hourly).\n");
|
||||
}
|
||||
35
lib/scheduler.js
Normal file
35
lib/scheduler.js
Normal file
@ -0,0 +1,35 @@
|
||||
// Session refresh scheduler - JavaScript version
|
||||
import cron from "node-cron";
|
||||
import { PrismaClient } from "@prisma/client";
|
||||
import { fetchAndStoreSessionsForAllCompanies } from "./csvFetcher.js";
|
||||
|
||||
const prisma = new PrismaClient();
|
||||
|
||||
/**
|
||||
* Refresh sessions for all companies
|
||||
*/
|
||||
async function refreshSessions() {
|
||||
console.log("[Scheduler] Starting session refresh...");
|
||||
try {
|
||||
await fetchAndStoreSessionsForAllCompanies();
|
||||
console.log("[Scheduler] Session refresh completed successfully.");
|
||||
} catch (error) {
|
||||
console.error("[Scheduler] Error during session refresh:", error);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Start the session refresh scheduler
|
||||
*/
|
||||
export function startScheduler() {
|
||||
// Run every 15 minutes
|
||||
cron.schedule("*/15 * * * *", async () => {
|
||||
try {
|
||||
await refreshSessions();
|
||||
} catch (error) {
|
||||
console.error("[Scheduler] Error in scheduler:", error);
|
||||
}
|
||||
});
|
||||
|
||||
console.log("[Scheduler] Started session refresh scheduler (runs every 15 minutes).");
|
||||
}
|
||||
@ -20,8 +20,7 @@ export function startScheduler() {
|
||||
company.csvUsername as string | undefined,
|
||||
company.csvPassword as string | undefined
|
||||
);
|
||||
await prisma.session.deleteMany({ where: { companyId: company.id } });
|
||||
|
||||
// Only add sessions that don't already exist in the database
|
||||
for (const session of sessions) {
|
||||
const sessionData: SessionCreateData = {
|
||||
...session,
|
||||
@ -31,6 +30,16 @@ export function startScheduler() {
|
||||
startTime: session.startTime || new Date(),
|
||||
};
|
||||
|
||||
// Check if the session already exists
|
||||
const existingSession = await prisma.session.findUnique({
|
||||
where: { id: sessionData.id },
|
||||
});
|
||||
|
||||
if (existingSession) {
|
||||
// Skip this session as it already exists
|
||||
continue;
|
||||
}
|
||||
|
||||
// Only include fields that are properly typed for Prisma
|
||||
await prisma.session.create({
|
||||
data: {
|
||||
|
||||
18
lib/schedulers.ts
Normal file
18
lib/schedulers.ts
Normal file
@ -0,0 +1,18 @@
|
||||
// Combined scheduler initialization
|
||||
import { startScheduler } from "./scheduler";
|
||||
import { startProcessingScheduler } from "./processingScheduler";
|
||||
|
||||
/**
|
||||
* Initialize all schedulers
|
||||
* - Session refresh scheduler (runs every 15 minutes)
|
||||
* - Session processing scheduler (runs every hour)
|
||||
*/
|
||||
export function initializeSchedulers() {
|
||||
// Start the session refresh scheduler
|
||||
startScheduler();
|
||||
|
||||
// Start the session processing scheduler
|
||||
startProcessingScheduler();
|
||||
|
||||
console.log("All schedulers initialized successfully");
|
||||
}
|
||||
@ -45,6 +45,7 @@ export interface ChatSession {
|
||||
country?: string | null;
|
||||
ipAddress?: string | null;
|
||||
sentiment?: number | null;
|
||||
sentimentCategory?: string | null; // "positive", "neutral", "negative" from OpenAPI
|
||||
messagesSent?: number;
|
||||
startTime: Date;
|
||||
endTime?: Date | null;
|
||||
@ -60,6 +61,9 @@ export interface ChatSession {
|
||||
initialMsg?: string;
|
||||
fullTranscriptUrl?: string | null;
|
||||
transcriptContent?: string | null;
|
||||
processed?: boolean | null; // Flag for post-processing status
|
||||
questions?: string | null; // JSON array of questions asked by user
|
||||
summary?: string | null; // Brief summary of the conversation
|
||||
}
|
||||
|
||||
export interface SessionQuery {
|
||||
|
||||
72
package-lock.json
generated
72
package-lock.json
generated
@ -8,7 +8,7 @@
|
||||
"name": "livedash-node",
|
||||
"version": "0.2.0",
|
||||
"dependencies": {
|
||||
"@prisma/client": "^6.8.2",
|
||||
"@prisma/client": "^6.10.1",
|
||||
"@rapideditor/country-coder": "^5.4.0",
|
||||
"@types/d3": "^7.4.3",
|
||||
"@types/d3-cloud": "^1.2.9",
|
||||
@ -54,7 +54,7 @@
|
||||
"postcss": "^8.5.3",
|
||||
"prettier": "^3.5.3",
|
||||
"prettier-plugin-jinja-template": "^2.1.0",
|
||||
"prisma": "^6.8.2",
|
||||
"prisma": "^6.10.1",
|
||||
"tailwindcss": "^4.1.7",
|
||||
"ts-node": "^10.9.2",
|
||||
"typescript": "^5.0.0"
|
||||
@ -1089,9 +1089,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@prisma/client": {
|
||||
"version": "6.8.2",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/client/-/client-6.8.2.tgz",
|
||||
"integrity": "sha512-5II+vbyzv4si6Yunwgkj0qT/iY0zyspttoDrL3R4BYgLdp42/d2C8xdi9vqkrYtKt9H32oFIukvyw3Koz5JoDg==",
|
||||
"version": "6.10.1",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/client/-/client-6.10.1.tgz",
|
||||
"integrity": "sha512-Re4pMlcUsQsUTAYMK7EJ4Bw2kg3WfZAAlr8GjORJaK4VOP6LxRQUQ1TuLnxcF42XqGkWQ36q5CQF1yVadANQ6w==",
|
||||
"hasInstallScript": true,
|
||||
"license": "Apache-2.0",
|
||||
"engines": {
|
||||
@ -1111,9 +1111,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@prisma/config": {
|
||||
"version": "6.8.2",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/config/-/config-6.8.2.tgz",
|
||||
"integrity": "sha512-ZJY1fF4qRBPdLQ/60wxNtX+eu89c3AkYEcP7L3jkp0IPXCNphCYxikTg55kPJLDOG6P0X+QG5tCv6CmsBRZWFQ==",
|
||||
"version": "6.10.1",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/config/-/config-6.10.1.tgz",
|
||||
"integrity": "sha512-kz4/bnqrOrzWo8KzYguN0cden4CzLJJ+2VSpKtF8utHS3l1JS0Lhv6BLwpOX6X9yNreTbZQZwewb+/BMPDCIYQ==",
|
||||
"devOptional": true,
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
@ -1121,53 +1121,53 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@prisma/debug": {
|
||||
"version": "6.8.2",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/debug/-/debug-6.8.2.tgz",
|
||||
"integrity": "sha512-4muBSSUwJJ9BYth5N8tqts8JtiLT8QI/RSAzEogwEfpbYGFo9mYsInsVo8dqXdPO2+Rm5OG5q0qWDDE3nyUbVg==",
|
||||
"version": "6.10.1",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/debug/-/debug-6.10.1.tgz",
|
||||
"integrity": "sha512-k2YT53cWxv9OLjW4zSYTZ6Z7j0gPfCzcr2Mj99qsuvlxr8WAKSZ2NcSR0zLf/mP4oxnYG842IMj3utTgcd7CaA==",
|
||||
"devOptional": true,
|
||||
"license": "Apache-2.0"
|
||||
},
|
||||
"node_modules/@prisma/engines": {
|
||||
"version": "6.8.2",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/engines/-/engines-6.8.2.tgz",
|
||||
"integrity": "sha512-XqAJ//LXjqYRQ1RRabs79KOY4+v6gZOGzbcwDQl0D6n9WBKjV7qdrbd042CwSK0v0lM9MSHsbcFnU2Yn7z8Zlw==",
|
||||
"version": "6.10.1",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/engines/-/engines-6.10.1.tgz",
|
||||
"integrity": "sha512-Q07P5rS2iPwk2IQr/rUQJ42tHjpPyFcbiH7PXZlV81Ryr9NYIgdxcUrwgVOWVm5T7ap02C0dNd1dpnNcSWig8A==",
|
||||
"devOptional": true,
|
||||
"hasInstallScript": true,
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@prisma/debug": "6.8.2",
|
||||
"@prisma/engines-version": "6.8.0-43.2060c79ba17c6bb9f5823312b6f6b7f4a845738e",
|
||||
"@prisma/fetch-engine": "6.8.2",
|
||||
"@prisma/get-platform": "6.8.2"
|
||||
"@prisma/debug": "6.10.1",
|
||||
"@prisma/engines-version": "6.10.1-1.9b628578b3b7cae625e8c927178f15a170e74a9c",
|
||||
"@prisma/fetch-engine": "6.10.1",
|
||||
"@prisma/get-platform": "6.10.1"
|
||||
}
|
||||
},
|
||||
"node_modules/@prisma/engines-version": {
|
||||
"version": "6.8.0-43.2060c79ba17c6bb9f5823312b6f6b7f4a845738e",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/engines-version/-/engines-version-6.8.0-43.2060c79ba17c6bb9f5823312b6f6b7f4a845738e.tgz",
|
||||
"integrity": "sha512-Rkik9lMyHpFNGaLpPF3H5q5TQTkm/aE7DsGM5m92FZTvWQsvmi6Va8On3pWvqLHOt5aPUvFb/FeZTmphI4CPiQ==",
|
||||
"version": "6.10.1-1.9b628578b3b7cae625e8c927178f15a170e74a9c",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/engines-version/-/engines-version-6.10.1-1.9b628578b3b7cae625e8c927178f15a170e74a9c.tgz",
|
||||
"integrity": "sha512-ZJFTsEqapiTYVzXya6TUKYDFnSWCNegfUiG5ik9fleQva5Sk3DNyyUi7X1+0ZxWFHwHDr6BZV5Vm+iwP+LlciA==",
|
||||
"devOptional": true,
|
||||
"license": "Apache-2.0"
|
||||
},
|
||||
"node_modules/@prisma/fetch-engine": {
|
||||
"version": "6.8.2",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/fetch-engine/-/fetch-engine-6.8.2.tgz",
|
||||
"integrity": "sha512-lCvikWOgaLOfqXGacEKSNeenvj0n3qR5QvZUOmPE2e1Eh8cMYSobxonCg9rqM6FSdTfbpqp9xwhSAOYfNqSW0g==",
|
||||
"version": "6.10.1",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/fetch-engine/-/fetch-engine-6.10.1.tgz",
|
||||
"integrity": "sha512-clmbG/Jgmrc/n6Y77QcBmAUlq9LrwI9Dbgy4pq5jeEARBpRCWJDJ7PWW1P8p0LfFU0i5fsyO7FqRzRB8mkdS4g==",
|
||||
"devOptional": true,
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@prisma/debug": "6.8.2",
|
||||
"@prisma/engines-version": "6.8.0-43.2060c79ba17c6bb9f5823312b6f6b7f4a845738e",
|
||||
"@prisma/get-platform": "6.8.2"
|
||||
"@prisma/debug": "6.10.1",
|
||||
"@prisma/engines-version": "6.10.1-1.9b628578b3b7cae625e8c927178f15a170e74a9c",
|
||||
"@prisma/get-platform": "6.10.1"
|
||||
}
|
||||
},
|
||||
"node_modules/@prisma/get-platform": {
|
||||
"version": "6.8.2",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/get-platform/-/get-platform-6.8.2.tgz",
|
||||
"integrity": "sha512-vXSxyUgX3vm1Q70QwzwkjeYfRryIvKno1SXbIqwSptKwqKzskINnDUcx85oX+ys6ooN2ATGSD0xN2UTfg6Zcow==",
|
||||
"version": "6.10.1",
|
||||
"resolved": "https://registry.npmjs.org/@prisma/get-platform/-/get-platform-6.10.1.tgz",
|
||||
"integrity": "sha512-4CY5ndKylcsce9Mv+VWp5obbR2/86SHOLVV053pwIkhVtT9C9A83yqiqI/5kJM9T1v1u1qco/bYjDKycmei9HA==",
|
||||
"devOptional": true,
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@prisma/debug": "6.8.2"
|
||||
"@prisma/debug": "6.10.1"
|
||||
}
|
||||
},
|
||||
"node_modules/@rapideditor/country-coder": {
|
||||
@ -7860,15 +7860,15 @@
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/prisma": {
|
||||
"version": "6.8.2",
|
||||
"resolved": "https://registry.npmjs.org/prisma/-/prisma-6.8.2.tgz",
|
||||
"integrity": "sha512-JNricTXQxzDtRS7lCGGOB4g5DJ91eg3nozdubXze3LpcMl1oWwcFddrj++Up3jnRE6X/3gB/xz3V+ecBk/eEGA==",
|
||||
"version": "6.10.1",
|
||||
"resolved": "https://registry.npmjs.org/prisma/-/prisma-6.10.1.tgz",
|
||||
"integrity": "sha512-khhlC/G49E4+uyA3T3H5PRBut486HD2bDqE2+rvkU0pwk9IAqGFacLFUyIx9Uw+W2eCtf6XGwsp+/strUwMNPw==",
|
||||
"devOptional": true,
|
||||
"hasInstallScript": true,
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@prisma/config": "6.8.2",
|
||||
"@prisma/engines": "6.8.2"
|
||||
"@prisma/config": "6.10.1",
|
||||
"@prisma/engines": "6.10.1"
|
||||
},
|
||||
"bin": {
|
||||
"prisma": "build/index.js"
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
"version": "0.2.0",
|
||||
"private": true,
|
||||
"dependencies": {
|
||||
"@prisma/client": "^6.8.2",
|
||||
"@prisma/client": "^6.10.1",
|
||||
"@rapideditor/country-coder": "^5.4.0",
|
||||
"@types/d3": "^7.4.3",
|
||||
"@types/d3-cloud": "^1.2.9",
|
||||
@ -50,7 +50,7 @@
|
||||
"postcss": "^8.5.3",
|
||||
"prettier": "^3.5.3",
|
||||
"prettier-plugin-jinja-template": "^2.1.0",
|
||||
"prisma": "^6.8.2",
|
||||
"prisma": "^6.10.1",
|
||||
"tailwindcss": "^4.1.7",
|
||||
"ts-node": "^10.9.2",
|
||||
"typescript": "^5.0.0"
|
||||
@ -58,6 +58,7 @@
|
||||
"scripts": {
|
||||
"build": "next build",
|
||||
"dev": "next dev --turbopack",
|
||||
"dev:with-schedulers": "node server.mjs",
|
||||
"format": "npx prettier --write .",
|
||||
"format:check": "npx prettier --check .",
|
||||
"lint": "next lint",
|
||||
@ -66,7 +67,7 @@
|
||||
"prisma:migrate": "prisma migrate dev",
|
||||
"prisma:seed": "node prisma/seed.mjs",
|
||||
"prisma:studio": "prisma studio",
|
||||
"start": "next start",
|
||||
"start": "node server.mjs",
|
||||
"lint:md": "markdownlint-cli2 \"**/*.md\" \"!.trunk/**\" \"!.venv/**\" \"!node_modules/**\"",
|
||||
"lint:md:fix": "markdownlint-cli2 --fix \"**/*.md\" \"!.trunk/**\" \"!.venv/**\" \"!node_modules/**\""
|
||||
},
|
||||
|
||||
@ -14,11 +14,25 @@ interface SessionCreateData {
|
||||
/**
|
||||
* Fetches transcript content from a URL
|
||||
* @param url The URL to fetch the transcript from
|
||||
* @param username Optional username for authentication
|
||||
* @param password Optional password for authentication
|
||||
* @returns The transcript content or null if fetching fails
|
||||
*/
|
||||
async function fetchTranscriptContent(url: string): Promise<string | null> {
|
||||
async function fetchTranscriptContent(
|
||||
url: string,
|
||||
username?: string,
|
||||
password?: string
|
||||
): Promise<string | null> {
|
||||
try {
|
||||
const response = await fetch(url);
|
||||
const authHeader =
|
||||
username && password
|
||||
? "Basic " + Buffer.from(`${username}:${password}`).toString("base64")
|
||||
: undefined;
|
||||
|
||||
const response = await fetch(url, {
|
||||
headers: authHeader ? { Authorization: authHeader } : {},
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
process.stderr.write(
|
||||
`Error fetching transcript: ${response.statusText}\n`
|
||||
@ -80,9 +94,7 @@ export default async function handler(
|
||||
company.csvPassword as string | undefined
|
||||
);
|
||||
|
||||
// Replace all session rows for this company (for demo simplicity)
|
||||
await prisma.session.deleteMany({ where: { companyId: company.id } });
|
||||
|
||||
// Only add sessions that don't already exist in the database
|
||||
for (const session of sessions) {
|
||||
const sessionData: SessionCreateData = {
|
||||
...session,
|
||||
@ -111,10 +123,22 @@ export default async function handler(
|
||||
let transcriptContent: string | null = null;
|
||||
if (session.fullTranscriptUrl) {
|
||||
transcriptContent = await fetchTranscriptContent(
|
||||
session.fullTranscriptUrl
|
||||
session.fullTranscriptUrl,
|
||||
company.csvUsername as string | undefined,
|
||||
company.csvPassword as string | undefined
|
||||
);
|
||||
}
|
||||
|
||||
// Check if the session already exists
|
||||
const existingSession = await prisma.session.findUnique({
|
||||
where: { id: sessionData.id },
|
||||
});
|
||||
|
||||
if (existingSession) {
|
||||
// Skip this session as it already exists
|
||||
continue;
|
||||
}
|
||||
|
||||
// Only include fields that are properly typed for Prisma
|
||||
await prisma.session.create({
|
||||
data: {
|
||||
|
||||
@ -46,6 +46,7 @@ export default async function handler(
|
||||
country: prismaSession.country ?? null,
|
||||
ipAddress: prismaSession.ipAddress ?? null,
|
||||
sentiment: prismaSession.sentiment ?? null,
|
||||
sentimentCategory: prismaSession.sentimentCategory ?? null, // New field
|
||||
messagesSent: prismaSession.messagesSent ?? undefined, // Use undefined if ChatSession expects number | undefined
|
||||
avgResponseTime: prismaSession.avgResponseTime ?? null,
|
||||
escalated: prismaSession.escalated ?? undefined,
|
||||
@ -55,6 +56,9 @@ export default async function handler(
|
||||
initialMsg: prismaSession.initialMsg ?? undefined,
|
||||
fullTranscriptUrl: prismaSession.fullTranscriptUrl ?? null,
|
||||
transcriptContent: prismaSession.transcriptContent ?? null,
|
||||
processed: prismaSession.processed ?? null, // New field
|
||||
questions: prismaSession.questions ?? null, // New field
|
||||
summary: prismaSession.summary ?? null, // New field
|
||||
};
|
||||
|
||||
return res.status(200).json({ session });
|
||||
|
||||
@ -0,0 +1,2 @@
|
||||
-- AlterTable
|
||||
ALTER TABLE "Session" ADD COLUMN "processed" BOOLEAN;
|
||||
@ -0,0 +1,4 @@
|
||||
-- AlterTable
|
||||
ALTER TABLE "Session" ADD COLUMN "questions" TEXT;
|
||||
ALTER TABLE "Session" ADD COLUMN "sentimentCategory" TEXT;
|
||||
ALTER TABLE "Session" ADD COLUMN "summary" TEXT;
|
||||
@ -43,7 +43,8 @@ model Session {
|
||||
country String?
|
||||
language String?
|
||||
messagesSent Int?
|
||||
sentiment Float?
|
||||
sentiment Float? // Original sentiment score (float)
|
||||
sentimentCategory String? // "positive", "neutral", "negative" from OpenAPI
|
||||
escalated Boolean?
|
||||
forwardedHr Boolean?
|
||||
fullTranscriptUrl String?
|
||||
@ -53,5 +54,8 @@ model Session {
|
||||
tokensEur Float?
|
||||
category String?
|
||||
initialMsg String?
|
||||
processed Boolean? // Flag for post-processing status
|
||||
questions String? // JSON array of questions asked by user
|
||||
summary String? // Brief summary of the conversation
|
||||
createdAt DateTime @default(now())
|
||||
}
|
||||
|
||||
269
scripts/process_sessions.mjs
Normal file
269
scripts/process_sessions.mjs
Normal file
@ -0,0 +1,269 @@
|
||||
// Script to manually process unprocessed sessions with OpenAI
|
||||
import { PrismaClient } from "@prisma/client";
|
||||
import fetch from "node-fetch";
|
||||
|
||||
const prisma = new PrismaClient();
|
||||
const OPENAI_API_KEY = process.env.OPENAI_API_KEY;
|
||||
const OPENAI_API_URL = "https://api.openai.com/v1/chat/completions";
|
||||
|
||||
/**
|
||||
* Processes a session transcript using OpenAI API
|
||||
* @param {string} sessionId The session ID
|
||||
* @param {string} transcript The transcript content to process
|
||||
* @returns {Promise<Object>} Processed data from OpenAI
|
||||
*/
|
||||
async function processTranscriptWithOpenAI(sessionId, transcript) {
|
||||
if (!OPENAI_API_KEY) {
|
||||
throw new Error("OPENAI_API_KEY environment variable is not set");
|
||||
}
|
||||
|
||||
// Create a system message with instructions
|
||||
const systemMessage = `
|
||||
You are an AI assistant tasked with analyzing chat transcripts.
|
||||
Extract the following information from the transcript:
|
||||
1. The primary language used by the user (ISO 639-1 code)
|
||||
2. Number of messages sent by the user
|
||||
3. Overall sentiment (positive, neutral, or negative)
|
||||
4. Whether the conversation was escalated
|
||||
5. Whether HR contact was mentioned or provided
|
||||
6. The best-fitting category for the conversation from this list:
|
||||
- Schedule & Hours
|
||||
- Leave & Vacation
|
||||
- Sick Leave & Recovery
|
||||
- Salary & Compensation
|
||||
- Contract & Hours
|
||||
- Onboarding
|
||||
- Offboarding
|
||||
- Workwear & Staff Pass
|
||||
- Team & Contacts
|
||||
- Personal Questions
|
||||
- Access & Login
|
||||
- Social questions
|
||||
- Unrecognized / Other
|
||||
7. Up to 5 paraphrased questions asked by the user (in English)
|
||||
8. A brief summary of the conversation (10-300 characters)
|
||||
|
||||
Return the data in JSON format matching this schema:
|
||||
{
|
||||
"language": "ISO 639-1 code",
|
||||
"messages_sent": number,
|
||||
"sentiment": "positive|neutral|negative",
|
||||
"escalated": boolean,
|
||||
"forwarded_hr": boolean,
|
||||
"category": "one of the categories listed above",
|
||||
"questions": ["question 1", "question 2", ...],
|
||||
"summary": "brief summary",
|
||||
"session_id": "${sessionId}"
|
||||
}
|
||||
`;
|
||||
|
||||
try {
|
||||
const response = await fetch(OPENAI_API_URL, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${OPENAI_API_KEY}`,
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: "gpt-4-turbo",
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: systemMessage,
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: transcript,
|
||||
},
|
||||
],
|
||||
temperature: 0.3, // Lower temperature for more consistent results
|
||||
response_format: { type: "json_object" },
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text();
|
||||
throw new Error(`OpenAI API error: ${response.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
const processedData = JSON.parse(data.choices[0].message.content);
|
||||
|
||||
// Validate the response against our expected schema
|
||||
validateOpenAIResponse(processedData);
|
||||
|
||||
return processedData;
|
||||
} catch (error) {
|
||||
console.error(`Error processing transcript with OpenAI:`, error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Validates the OpenAI response against our expected schema
|
||||
* @param {Object} data The data to validate
|
||||
*/
|
||||
function validateOpenAIResponse(data) {
|
||||
// Check required fields
|
||||
const requiredFields = [
|
||||
"language",
|
||||
"messages_sent",
|
||||
"sentiment",
|
||||
"escalated",
|
||||
"forwarded_hr",
|
||||
"category",
|
||||
"questions",
|
||||
"summary",
|
||||
"session_id",
|
||||
];
|
||||
|
||||
for (const field of requiredFields) {
|
||||
if (!(field in data)) {
|
||||
throw new Error(`Missing required field: ${field}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Validate field types
|
||||
if (typeof data.language !== "string" || !/^[a-z]{2}$/.test(data.language)) {
|
||||
throw new Error("Invalid language format. Expected ISO 639-1 code (e.g., 'en')");
|
||||
}
|
||||
|
||||
if (typeof data.messages_sent !== "number" || data.messages_sent < 0) {
|
||||
throw new Error("Invalid messages_sent. Expected non-negative number");
|
||||
}
|
||||
|
||||
if (!["positive", "neutral", "negative"].includes(data.sentiment)) {
|
||||
throw new Error("Invalid sentiment. Expected 'positive', 'neutral', or 'negative'");
|
||||
}
|
||||
|
||||
if (typeof data.escalated !== "boolean") {
|
||||
throw new Error("Invalid escalated. Expected boolean");
|
||||
}
|
||||
|
||||
if (typeof data.forwarded_hr !== "boolean") {
|
||||
throw new Error("Invalid forwarded_hr. Expected boolean");
|
||||
}
|
||||
|
||||
const validCategories = [
|
||||
"Schedule & Hours",
|
||||
"Leave & Vacation",
|
||||
"Sick Leave & Recovery",
|
||||
"Salary & Compensation",
|
||||
"Contract & Hours",
|
||||
"Onboarding",
|
||||
"Offboarding",
|
||||
"Workwear & Staff Pass",
|
||||
"Team & Contacts",
|
||||
"Personal Questions",
|
||||
"Access & Login",
|
||||
"Social questions",
|
||||
"Unrecognized / Other",
|
||||
];
|
||||
|
||||
if (!validCategories.includes(data.category)) {
|
||||
throw new Error(`Invalid category. Expected one of: ${validCategories.join(", ")}`);
|
||||
}
|
||||
|
||||
if (!Array.isArray(data.questions)) {
|
||||
throw new Error("Invalid questions. Expected array of strings");
|
||||
}
|
||||
|
||||
if (typeof data.summary !== "string" || data.summary.length < 10 || data.summary.length > 300) {
|
||||
throw new Error("Invalid summary. Expected string between 10-300 characters");
|
||||
}
|
||||
|
||||
if (typeof data.session_id !== "string") {
|
||||
throw new Error("Invalid session_id. Expected string");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Main function to process unprocessed sessions
|
||||
*/
|
||||
async function processUnprocessedSessions() {
|
||||
console.log("Starting to process unprocessed sessions...");
|
||||
|
||||
// Find sessions that have transcript content but haven't been processed
|
||||
const sessionsToProcess = await prisma.session.findMany({
|
||||
where: {
|
||||
AND: [
|
||||
{ transcriptContent: { not: null } },
|
||||
{ transcriptContent: { not: "" } },
|
||||
{ processed: { not: true } }, // Either false or null
|
||||
],
|
||||
},
|
||||
select: {
|
||||
id: true,
|
||||
transcriptContent: true,
|
||||
},
|
||||
});
|
||||
|
||||
if (sessionsToProcess.length === 0) {
|
||||
console.log("No sessions found requiring processing.");
|
||||
return;
|
||||
}
|
||||
|
||||
console.log(`Found ${sessionsToProcess.length} sessions to process.`);
|
||||
let successCount = 0;
|
||||
let errorCount = 0;
|
||||
|
||||
for (const session of sessionsToProcess) {
|
||||
if (!session.transcriptContent) {
|
||||
// Should not happen due to query, but good for type safety
|
||||
console.warn(`Session ${session.id} has no transcript content, skipping.`);
|
||||
continue;
|
||||
}
|
||||
|
||||
console.log(`Processing transcript for session ${session.id}...`);
|
||||
try {
|
||||
const processedData = await processTranscriptWithOpenAI(
|
||||
session.id,
|
||||
session.transcriptContent
|
||||
);
|
||||
|
||||
// Map sentiment string to float value for compatibility with existing data
|
||||
const sentimentMap = {
|
||||
positive: 0.8,
|
||||
neutral: 0.0,
|
||||
negative: -0.8,
|
||||
};
|
||||
|
||||
// Update the session with processed data
|
||||
await prisma.session.update({
|
||||
where: { id: session.id },
|
||||
data: {
|
||||
language: processedData.language,
|
||||
messagesSent: processedData.messages_sent,
|
||||
sentiment: sentimentMap[processedData.sentiment] || 0,
|
||||
sentimentCategory: processedData.sentiment,
|
||||
escalated: processedData.escalated,
|
||||
forwardedHr: processedData.forwarded_hr,
|
||||
category: processedData.category,
|
||||
questions: JSON.stringify(processedData.questions),
|
||||
summary: processedData.summary,
|
||||
processed: true,
|
||||
},
|
||||
});
|
||||
|
||||
console.log(`Successfully processed session ${session.id}.`);
|
||||
successCount++;
|
||||
} catch (error) {
|
||||
console.error(`Error processing session ${session.id}:`, error);
|
||||
errorCount++;
|
||||
}
|
||||
}
|
||||
|
||||
console.log("Session processing complete.");
|
||||
console.log(`Successfully processed: ${successCount} sessions.`);
|
||||
console.log(`Failed to process: ${errorCount} sessions.`);
|
||||
}
|
||||
|
||||
// Run the main function
|
||||
processUnprocessedSessions()
|
||||
.catch((e) => {
|
||||
console.error("An error occurred during the script execution:", e);
|
||||
process.exitCode = 1;
|
||||
})
|
||||
.finally(async () => {
|
||||
await prisma.$disconnect();
|
||||
});
|
||||
284
scripts/process_sessions.ts
Normal file
284
scripts/process_sessions.ts
Normal file
@ -0,0 +1,284 @@
|
||||
import { PrismaClient } from "@prisma/client";
|
||||
import fetch from "node-fetch";
|
||||
|
||||
const prisma = new PrismaClient();
|
||||
const OPENAI_API_KEY = process.env.OPENAI_API_KEY;
|
||||
const OPENAI_API_URL = "https://api.openai.com/v1/chat/completions";
|
||||
|
||||
// Define the expected response structure from OpenAI
|
||||
interface OpenAIProcessedData {
|
||||
language: string;
|
||||
messages_sent: number;
|
||||
sentiment: "positive" | "neutral" | "negative";
|
||||
escalated: boolean;
|
||||
forwarded_hr: boolean;
|
||||
category: string;
|
||||
questions: string[];
|
||||
summary: string;
|
||||
session_id: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Processes a session transcript using OpenAI API
|
||||
* @param sessionId The session ID
|
||||
* @param transcript The transcript content to process
|
||||
* @returns Processed data from OpenAI
|
||||
*/
|
||||
async function processTranscriptWithOpenAI(
|
||||
sessionId: string,
|
||||
transcript: string
|
||||
): Promise<OpenAIProcessedData> {
|
||||
if (!OPENAI_API_KEY) {
|
||||
throw new Error("OPENAI_API_KEY environment variable is not set");
|
||||
}
|
||||
|
||||
// Create a system message with instructions
|
||||
const systemMessage = `
|
||||
You are an AI assistant tasked with analyzing chat transcripts.
|
||||
Extract the following information from the transcript:
|
||||
1. The primary language used by the user (ISO 639-1 code)
|
||||
2. Number of messages sent by the user
|
||||
3. Overall sentiment (positive, neutral, or negative)
|
||||
4. Whether the conversation was escalated
|
||||
5. Whether HR contact was mentioned or provided
|
||||
6. The best-fitting category for the conversation from this list:
|
||||
- Schedule & Hours
|
||||
- Leave & Vacation
|
||||
- Sick Leave & Recovery
|
||||
- Salary & Compensation
|
||||
- Contract & Hours
|
||||
- Onboarding
|
||||
- Offboarding
|
||||
- Workwear & Staff Pass
|
||||
- Team & Contacts
|
||||
- Personal Questions
|
||||
- Access & Login
|
||||
- Social questions
|
||||
- Unrecognized / Other
|
||||
7. Up to 5 paraphrased questions asked by the user (in English)
|
||||
8. A brief summary of the conversation (10-300 characters)
|
||||
|
||||
Return the data in JSON format matching this schema:
|
||||
{
|
||||
"language": "ISO 639-1 code",
|
||||
"messages_sent": number,
|
||||
"sentiment": "positive|neutral|negative",
|
||||
"escalated": boolean,
|
||||
"forwarded_hr": boolean,
|
||||
"category": "one of the categories listed above",
|
||||
"questions": ["question 1", "question 2", ...],
|
||||
"summary": "brief summary",
|
||||
"session_id": "${sessionId}"
|
||||
}
|
||||
`;
|
||||
|
||||
try {
|
||||
const response = await fetch(OPENAI_API_URL, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${OPENAI_API_KEY}`,
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: "gpt-4-turbo",
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: systemMessage,
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: transcript,
|
||||
},
|
||||
],
|
||||
temperature: 0.3, // Lower temperature for more consistent results
|
||||
response_format: { type: "json_object" },
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text();
|
||||
throw new Error(`OpenAI API error: ${response.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
const data = await response.json() as any;
|
||||
const processedData = JSON.parse(data.choices[0].message.content);
|
||||
|
||||
// Validate the response against our expected schema
|
||||
validateOpenAIResponse(processedData);
|
||||
|
||||
return processedData;
|
||||
} catch (error) {
|
||||
console.error(`Error processing transcript with OpenAI:`, error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Validates the OpenAI response against our expected schema
|
||||
* @param data The data to validate
|
||||
*/
|
||||
function validateOpenAIResponse(data: any): asserts data is OpenAIProcessedData {
|
||||
// Check required fields
|
||||
const requiredFields = [
|
||||
"language",
|
||||
"messages_sent",
|
||||
"sentiment",
|
||||
"escalated",
|
||||
"forwarded_hr",
|
||||
"category",
|
||||
"questions",
|
||||
"summary",
|
||||
"session_id",
|
||||
];
|
||||
|
||||
for (const field of requiredFields) {
|
||||
if (!(field in data)) {
|
||||
throw new Error(`Missing required field: ${field}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Validate field types
|
||||
if (typeof data.language !== "string" || !/^[a-z]{2}$/.test(data.language)) {
|
||||
throw new Error("Invalid language format. Expected ISO 639-1 code (e.g., 'en')");
|
||||
}
|
||||
|
||||
if (typeof data.messages_sent !== "number" || data.messages_sent < 0) {
|
||||
throw new Error("Invalid messages_sent. Expected non-negative number");
|
||||
}
|
||||
|
||||
if (!["positive", "neutral", "negative"].includes(data.sentiment)) {
|
||||
throw new Error("Invalid sentiment. Expected 'positive', 'neutral', or 'negative'");
|
||||
}
|
||||
|
||||
if (typeof data.escalated !== "boolean") {
|
||||
throw new Error("Invalid escalated. Expected boolean");
|
||||
}
|
||||
|
||||
if (typeof data.forwarded_hr !== "boolean") {
|
||||
throw new Error("Invalid forwarded_hr. Expected boolean");
|
||||
}
|
||||
|
||||
const validCategories = [
|
||||
"Schedule & Hours",
|
||||
"Leave & Vacation",
|
||||
"Sick Leave & Recovery",
|
||||
"Salary & Compensation",
|
||||
"Contract & Hours",
|
||||
"Onboarding",
|
||||
"Offboarding",
|
||||
"Workwear & Staff Pass",
|
||||
"Team & Contacts",
|
||||
"Personal Questions",
|
||||
"Access & Login",
|
||||
"Social questions",
|
||||
"Unrecognized / Other",
|
||||
];
|
||||
|
||||
if (!validCategories.includes(data.category)) {
|
||||
throw new Error(`Invalid category. Expected one of: ${validCategories.join(", ")}`);
|
||||
}
|
||||
|
||||
if (!Array.isArray(data.questions)) {
|
||||
throw new Error("Invalid questions. Expected array of strings");
|
||||
}
|
||||
|
||||
if (typeof data.summary !== "string" || data.summary.length < 10 || data.summary.length > 300) {
|
||||
throw new Error("Invalid summary. Expected string between 10-300 characters");
|
||||
}
|
||||
|
||||
if (typeof data.session_id !== "string") {
|
||||
throw new Error("Invalid session_id. Expected string");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Main function to process unprocessed sessions
|
||||
*/
|
||||
async function processUnprocessedSessions() {
|
||||
console.log("Starting to process unprocessed sessions...");
|
||||
|
||||
// Find sessions that have transcript content but haven't been processed
|
||||
const sessionsToProcess = await prisma.session.findMany({
|
||||
where: {
|
||||
AND: [
|
||||
{ transcriptContent: { not: null } },
|
||||
{ transcriptContent: { not: "" } },
|
||||
{ processed: { not: true } }, // Either false or null
|
||||
],
|
||||
},
|
||||
select: {
|
||||
id: true,
|
||||
transcriptContent: true,
|
||||
},
|
||||
});
|
||||
|
||||
if (sessionsToProcess.length === 0) {
|
||||
console.log("No sessions found requiring processing.");
|
||||
return;
|
||||
}
|
||||
|
||||
console.log(`Found ${sessionsToProcess.length} sessions to process.`);
|
||||
let successCount = 0;
|
||||
let errorCount = 0;
|
||||
|
||||
for (const session of sessionsToProcess) {
|
||||
if (!session.transcriptContent) {
|
||||
// Should not happen due to query, but good for type safety
|
||||
console.warn(`Session ${session.id} has no transcript content, skipping.`);
|
||||
continue;
|
||||
}
|
||||
|
||||
console.log(`Processing transcript for session ${session.id}...`);
|
||||
try {
|
||||
const processedData = await processTranscriptWithOpenAI(
|
||||
session.id,
|
||||
session.transcriptContent
|
||||
);
|
||||
|
||||
// Map sentiment string to float value for compatibility with existing data
|
||||
const sentimentMap: Record<string, number> = {
|
||||
positive: 0.8,
|
||||
neutral: 0.0,
|
||||
negative: -0.8,
|
||||
};
|
||||
|
||||
// Update the session with processed data
|
||||
await prisma.session.update({
|
||||
where: { id: session.id },
|
||||
data: {
|
||||
language: processedData.language,
|
||||
messagesSent: processedData.messages_sent,
|
||||
sentiment: sentimentMap[processedData.sentiment] || 0,
|
||||
sentimentCategory: processedData.sentiment,
|
||||
escalated: processedData.escalated,
|
||||
forwardedHr: processedData.forwarded_hr,
|
||||
category: processedData.category,
|
||||
questions: JSON.stringify(processedData.questions),
|
||||
summary: processedData.summary,
|
||||
processed: true,
|
||||
},
|
||||
});
|
||||
|
||||
console.log(`Successfully processed session ${session.id}.`);
|
||||
successCount++;
|
||||
} catch (error) {
|
||||
console.error(`Error processing session ${session.id}:`, error);
|
||||
errorCount++;
|
||||
}
|
||||
}
|
||||
|
||||
console.log("Session processing complete.");
|
||||
console.log(`Successfully processed: ${successCount} sessions.`);
|
||||
console.log(`Failed to process: ${errorCount} sessions.`);
|
||||
}
|
||||
|
||||
// Run the main function
|
||||
processUnprocessedSessions()
|
||||
.catch((e) => {
|
||||
console.error("An error occurred during the script execution:", e);
|
||||
process.exitCode = 1;
|
||||
})
|
||||
.finally(async () => {
|
||||
await prisma.$disconnect();
|
||||
});
|
||||
39
server.js
Normal file
39
server.js
Normal file
@ -0,0 +1,39 @@
|
||||
// Custom Next.js server with scheduler initialization
|
||||
const { createServer } = require('http');
|
||||
const { parse } = require('url');
|
||||
const next = require('next');
|
||||
const { startScheduler } = require('./lib/scheduler');
|
||||
const { startProcessingScheduler } = require('./lib/processingScheduler');
|
||||
|
||||
const dev = process.env.NODE_ENV !== 'production';
|
||||
const hostname = 'localhost';
|
||||
const port = process.env.PORT || 3000;
|
||||
|
||||
// Initialize Next.js
|
||||
const app = next({ dev, hostname, port });
|
||||
const handle = app.getRequestHandler();
|
||||
|
||||
app.prepare().then(() => {
|
||||
// Initialize schedulers when the server starts
|
||||
console.log('Starting schedulers...');
|
||||
startScheduler();
|
||||
startProcessingScheduler();
|
||||
console.log('All schedulers initialized successfully');
|
||||
|
||||
createServer(async (req, res) => {
|
||||
try {
|
||||
// Parse the URL
|
||||
const parsedUrl = parse(req.url, true);
|
||||
|
||||
// Let Next.js handle the request
|
||||
await handle(req, res, parsedUrl);
|
||||
} catch (err) {
|
||||
console.error('Error occurred handling', req.url, err);
|
||||
res.statusCode = 500;
|
||||
res.end('Internal Server Error');
|
||||
}
|
||||
}).listen(port, (err) => {
|
||||
if (err) throw err;
|
||||
console.log(`> Ready on http://${hostname}:${port}`);
|
||||
});
|
||||
});
|
||||
56
server.mjs
Normal file
56
server.mjs
Normal file
@ -0,0 +1,56 @@
|
||||
// Custom Next.js server with scheduler initialization
|
||||
import { createServer } from 'http';
|
||||
import { parse } from 'url';
|
||||
import next from 'next';
|
||||
|
||||
// We'll need to dynamically import these after they're compiled
|
||||
let startScheduler;
|
||||
let startProcessingScheduler;
|
||||
|
||||
const dev = process.env.NODE_ENV !== 'production';
|
||||
const hostname = 'localhost';
|
||||
const port = parseInt(process.env.PORT || '3000', 10);
|
||||
|
||||
// Initialize Next.js
|
||||
const app = next({ dev, hostname, port });
|
||||
const handle = app.getRequestHandler();
|
||||
|
||||
async function init() {
|
||||
try {
|
||||
// Dynamically import the schedulers
|
||||
const scheduler = await import('./lib/scheduler.js');
|
||||
const processingScheduler = await import('./lib/processingScheduler.js');
|
||||
|
||||
startScheduler = scheduler.startScheduler;
|
||||
startProcessingScheduler = processingScheduler.startProcessingScheduler;
|
||||
|
||||
app.prepare().then(() => {
|
||||
// Initialize schedulers when the server starts
|
||||
console.log('Starting schedulers...');
|
||||
startScheduler();
|
||||
startProcessingScheduler();
|
||||
console.log('All schedulers initialized successfully');
|
||||
|
||||
createServer(async (req, res) => {
|
||||
try {
|
||||
// Parse the URL
|
||||
const parsedUrl = parse(req.url || '', true);
|
||||
|
||||
// Let Next.js handle the request
|
||||
await handle(req, res, parsedUrl);
|
||||
} catch (err) {
|
||||
console.error('Error occurred handling', req.url, err);
|
||||
res.statusCode = 500;
|
||||
res.end('Internal Server Error');
|
||||
}
|
||||
}).listen(port, () => {
|
||||
console.log(`> Ready on http://${hostname}:${port}`);
|
||||
});
|
||||
});
|
||||
} catch (error) {
|
||||
console.error('Failed to initialize server:', error);
|
||||
process.exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
init();
|
||||
38
server.ts
Normal file
38
server.ts
Normal file
@ -0,0 +1,38 @@
|
||||
// Custom Next.js server with scheduler initialization
|
||||
import { createServer } from 'http';
|
||||
import { parse } from 'url';
|
||||
import next from 'next';
|
||||
import { startScheduler } from './lib/scheduler.js';
|
||||
import { startProcessingScheduler } from './lib/processingScheduler.js';
|
||||
|
||||
const dev = process.env.NODE_ENV !== 'production';
|
||||
const hostname = 'localhost';
|
||||
const port = parseInt(process.env.PORT || '3000', 10);
|
||||
|
||||
// Initialize Next.js
|
||||
const app = next({ dev, hostname, port });
|
||||
const handle = app.getRequestHandler();
|
||||
|
||||
app.prepare().then(() => {
|
||||
// Initialize schedulers when the server starts
|
||||
console.log('Starting schedulers...');
|
||||
startScheduler();
|
||||
startProcessingScheduler();
|
||||
console.log('All schedulers initialized successfully');
|
||||
|
||||
createServer(async (req, res) => {
|
||||
try {
|
||||
// Parse the URL
|
||||
const parsedUrl = parse(req.url || '', true);
|
||||
|
||||
// Let Next.js handle the request
|
||||
await handle(req, res, parsedUrl);
|
||||
} catch (err) {
|
||||
console.error('Error occurred handling', req.url, err);
|
||||
res.statusCode = 500;
|
||||
res.end('Internal Server Error');
|
||||
}
|
||||
}).listen(port, () => {
|
||||
console.log(`> Ready on http://${hostname}:${port}`);
|
||||
});
|
||||
});
|
||||
Reference in New Issue
Block a user