mirror of
https://github.com/kjanat/livedash-node.git
synced 2026-01-16 13:52:16 +01:00
feat: Implement session processing and refresh schedulers
- Added processingScheduler.js and processingScheduler.ts to handle session transcript processing using OpenAI API. - Implemented a new scheduler (scheduler.js and schedulers.ts) for refreshing sessions every 15 minutes. - Updated Prisma migrations to add new fields for processed sessions, including questions, sentimentCategory, and summary. - Created scripts (process_sessions.mjs and process_sessions.ts) for manual processing of unprocessed sessions. - Enhanced server.js and server.mjs to initialize schedulers on server start.
This commit is contained in:
277
lib/processingScheduler.js
Normal file
277
lib/processingScheduler.js
Normal file
@ -0,0 +1,277 @@
|
||||
// Session processing scheduler - JavaScript version
|
||||
import cron from "node-cron";
|
||||
import { PrismaClient } from "@prisma/client";
|
||||
import fetch from "node-fetch";
|
||||
|
||||
const prisma = new PrismaClient();
|
||||
const OPENAI_API_KEY = process.env.OPENAI_API_KEY;
|
||||
const OPENAI_API_URL = "https://api.openai.com/v1/chat/completions";
|
||||
|
||||
/**
|
||||
* Processes a session transcript using OpenAI API
|
||||
* @param {string} sessionId The session ID
|
||||
* @param {string} transcript The transcript content to process
|
||||
* @returns {Promise<Object>} Processed data from OpenAI
|
||||
*/
|
||||
async function processTranscriptWithOpenAI(sessionId, transcript) {
|
||||
if (!OPENAI_API_KEY) {
|
||||
throw new Error("OPENAI_API_KEY environment variable is not set");
|
||||
}
|
||||
|
||||
// Create a system message with instructions
|
||||
const systemMessage = `
|
||||
You are an AI assistant tasked with analyzing chat transcripts.
|
||||
Extract the following information from the transcript:
|
||||
1. The primary language used by the user (ISO 639-1 code)
|
||||
2. Number of messages sent by the user
|
||||
3. Overall sentiment (positive, neutral, or negative)
|
||||
4. Whether the conversation was escalated
|
||||
5. Whether HR contact was mentioned or provided
|
||||
6. The best-fitting category for the conversation from this list:
|
||||
- Schedule & Hours
|
||||
- Leave & Vacation
|
||||
- Sick Leave & Recovery
|
||||
- Salary & Compensation
|
||||
- Contract & Hours
|
||||
- Onboarding
|
||||
- Offboarding
|
||||
- Workwear & Staff Pass
|
||||
- Team & Contacts
|
||||
- Personal Questions
|
||||
- Access & Login
|
||||
- Social questions
|
||||
- Unrecognized / Other
|
||||
7. Up to 5 paraphrased questions asked by the user (in English)
|
||||
8. A brief summary of the conversation (10-300 characters)
|
||||
|
||||
Return the data in JSON format matching this schema:
|
||||
{
|
||||
"language": "ISO 639-1 code",
|
||||
"messages_sent": number,
|
||||
"sentiment": "positive|neutral|negative",
|
||||
"escalated": boolean,
|
||||
"forwarded_hr": boolean,
|
||||
"category": "one of the categories listed above",
|
||||
"questions": ["question 1", "question 2", ...],
|
||||
"summary": "brief summary",
|
||||
"session_id": "${sessionId}"
|
||||
}
|
||||
`;
|
||||
|
||||
try {
|
||||
const response = await fetch(OPENAI_API_URL, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${OPENAI_API_KEY}`,
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: "gpt-4-turbo",
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: systemMessage,
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: transcript,
|
||||
},
|
||||
],
|
||||
temperature: 0.3, // Lower temperature for more consistent results
|
||||
response_format: { type: "json_object" },
|
||||
}),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorText = await response.text();
|
||||
throw new Error(`OpenAI API error: ${response.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
const processedData = JSON.parse(data.choices[0].message.content);
|
||||
|
||||
// Validate the response against our expected schema
|
||||
validateOpenAIResponse(processedData);
|
||||
|
||||
return processedData;
|
||||
} catch (error) {
|
||||
process.stderr.write(`Error processing transcript with OpenAI: ${error}\n`);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Validates the OpenAI response against our expected schema
|
||||
* @param {Object} data The data to validate
|
||||
*/
|
||||
function validateOpenAIResponse(data) {
|
||||
// Check required fields
|
||||
const requiredFields = [
|
||||
"language",
|
||||
"messages_sent",
|
||||
"sentiment",
|
||||
"escalated",
|
||||
"forwarded_hr",
|
||||
"category",
|
||||
"questions",
|
||||
"summary",
|
||||
"session_id",
|
||||
];
|
||||
|
||||
for (const field of requiredFields) {
|
||||
if (!(field in data)) {
|
||||
throw new Error(`Missing required field: ${field}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Validate field types
|
||||
if (typeof data.language !== "string" || !/^[a-z]{2}$/.test(data.language)) {
|
||||
throw new Error("Invalid language format. Expected ISO 639-1 code (e.g., 'en')");
|
||||
}
|
||||
|
||||
if (typeof data.messages_sent !== "number" || data.messages_sent < 0) {
|
||||
throw new Error("Invalid messages_sent. Expected non-negative number");
|
||||
}
|
||||
|
||||
if (!["positive", "neutral", "negative"].includes(data.sentiment)) {
|
||||
throw new Error("Invalid sentiment. Expected 'positive', 'neutral', or 'negative'");
|
||||
}
|
||||
|
||||
if (typeof data.escalated !== "boolean") {
|
||||
throw new Error("Invalid escalated. Expected boolean");
|
||||
}
|
||||
|
||||
if (typeof data.forwarded_hr !== "boolean") {
|
||||
throw new Error("Invalid forwarded_hr. Expected boolean");
|
||||
}
|
||||
|
||||
const validCategories = [
|
||||
"Schedule & Hours",
|
||||
"Leave & Vacation",
|
||||
"Sick Leave & Recovery",
|
||||
"Salary & Compensation",
|
||||
"Contract & Hours",
|
||||
"Onboarding",
|
||||
"Offboarding",
|
||||
"Workwear & Staff Pass",
|
||||
"Team & Contacts",
|
||||
"Personal Questions",
|
||||
"Access & Login",
|
||||
"Social questions",
|
||||
"Unrecognized / Other",
|
||||
];
|
||||
|
||||
if (!validCategories.includes(data.category)) {
|
||||
throw new Error(`Invalid category. Expected one of: ${validCategories.join(", ")}`);
|
||||
}
|
||||
|
||||
if (!Array.isArray(data.questions)) {
|
||||
throw new Error("Invalid questions. Expected array of strings");
|
||||
}
|
||||
|
||||
if (typeof data.summary !== "string" || data.summary.length < 10 || data.summary.length > 300) {
|
||||
throw new Error("Invalid summary. Expected string between 10-300 characters");
|
||||
}
|
||||
|
||||
if (typeof data.session_id !== "string") {
|
||||
throw new Error("Invalid session_id. Expected string");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Process unprocessed sessions
|
||||
*/
|
||||
async function processUnprocessedSessions() {
|
||||
process.stdout.write("[ProcessingScheduler] Starting to process unprocessed sessions...\n");
|
||||
|
||||
// Find sessions that have transcript content but haven't been processed
|
||||
const sessionsToProcess = await prisma.session.findMany({
|
||||
where: {
|
||||
AND: [
|
||||
{ transcriptContent: { not: null } },
|
||||
{ transcriptContent: { not: "" } },
|
||||
{ processed: { not: true } }, // Either false or null
|
||||
],
|
||||
},
|
||||
select: {
|
||||
id: true,
|
||||
transcriptContent: true,
|
||||
},
|
||||
take: 10, // Process in batches to avoid overloading the system
|
||||
});
|
||||
|
||||
if (sessionsToProcess.length === 0) {
|
||||
process.stdout.write("[ProcessingScheduler] No sessions found requiring processing.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
process.stdout.write(`[ProcessingScheduler] Found ${sessionsToProcess.length} sessions to process.\n`);
|
||||
let successCount = 0;
|
||||
let errorCount = 0;
|
||||
|
||||
for (const session of sessionsToProcess) {
|
||||
if (!session.transcriptContent) {
|
||||
// Should not happen due to query, but good for type safety
|
||||
process.stderr.write(`[ProcessingScheduler] Session ${session.id} has no transcript content, skipping.\n`);
|
||||
continue;
|
||||
}
|
||||
|
||||
process.stdout.write(`[ProcessingScheduler] Processing transcript for session ${session.id}...\n`);
|
||||
try {
|
||||
const processedData = await processTranscriptWithOpenAI(
|
||||
session.id,
|
||||
session.transcriptContent
|
||||
);
|
||||
|
||||
// Map sentiment string to float value for compatibility with existing data
|
||||
const sentimentMap = {
|
||||
positive: 0.8,
|
||||
neutral: 0.0,
|
||||
negative: -0.8,
|
||||
};
|
||||
|
||||
// Update the session with processed data
|
||||
await prisma.session.update({
|
||||
where: { id: session.id },
|
||||
data: {
|
||||
language: processedData.language,
|
||||
messagesSent: processedData.messages_sent,
|
||||
sentiment: sentimentMap[processedData.sentiment] || 0,
|
||||
sentimentCategory: processedData.sentiment,
|
||||
escalated: processedData.escalated,
|
||||
forwardedHr: processedData.forwarded_hr,
|
||||
category: processedData.category,
|
||||
questions: JSON.stringify(processedData.questions),
|
||||
summary: processedData.summary,
|
||||
processed: true,
|
||||
},
|
||||
});
|
||||
|
||||
process.stdout.write(`[ProcessingScheduler] Successfully processed session ${session.id}.\n`);
|
||||
successCount++;
|
||||
} catch (error) {
|
||||
process.stderr.write(`[ProcessingScheduler] Error processing session ${session.id}: ${error}\n`);
|
||||
errorCount++;
|
||||
}
|
||||
}
|
||||
|
||||
process.stdout.write("[ProcessingScheduler] Session processing complete.\n");
|
||||
process.stdout.write(`[ProcessingScheduler] Successfully processed: ${successCount} sessions.\n`);
|
||||
process.stdout.write(`[ProcessingScheduler] Failed to process: ${errorCount} sessions.\n`);
|
||||
}
|
||||
|
||||
/**
|
||||
* Start the processing scheduler
|
||||
*/
|
||||
export function startProcessingScheduler() {
|
||||
// Process unprocessed sessions every hour
|
||||
cron.schedule("0 * * * *", async () => {
|
||||
try {
|
||||
await processUnprocessedSessions();
|
||||
} catch (error) {
|
||||
process.stderr.write(`[ProcessingScheduler] Error in scheduler: ${error}\n`);
|
||||
}
|
||||
});
|
||||
|
||||
process.stdout.write("[ProcessingScheduler] Started processing scheduler (runs hourly).\n");
|
||||
}
|
||||
Reference in New Issue
Block a user